下面是一个示例代码,实现了计算信息增益的功能:
import numpy as np
def entropy(labels):
"""
计算给定标签的熵值
"""
n_labels = len(labels)
if n_labels <= 1:
return 0
counts = np.bincount(labels)
probs = counts / n_labels
n_classes = np.count_nonzero(probs)
if n_classes <= 1:
return