联邦学习——一种基于分布和知识蒸馏的聚合策略

《FEDBE: Making Bayesian Model Ensemble Applicable to Federated Learning》是ICLR 2021的一篇文章。该文章主要提出了一种新的聚合策略,该策略在 multi-round FL 以及 Non-IID 下具有不错的表现。这里我主要总结这个策略的思路。

  • 构建模型分布:首先客户端将本地训练好的模型发送给服务端,服务端应用 Dirichlet 或 Bayesian 构建模型的分布,具体构建方法可以看论文,其中用到的蒙特卡洛方法可以参考【怎么通俗理解蒙特卡洛模拟?】
  • 模型采样:服务端对所构建的模型分布进行采样,得到 model ensemble,注意,这里采样得到的是多个模型,是无法应用于联邦学习的(受限于通信代价,服务端一般只把一个模型发送给客户端)。那么就需要把这多个模型聚合成一个,但这里又不像 FedAvg 可以根据数据量大小来进行聚合,因此这篇文章提出了一个新的方法。
  • 模型聚合:文章假设服务端可以收集到一些无标签数据,然后以集成学习的方法用采样得到的 model ensemble 对数据进行预测,将预测结果作为伪标签,进而以知识蒸馏的方式将 model ensemble 总结为 single global model。具体是以伪标签为 teacher,single global model 为 student。
  • 有一个问题是,集成学习预测出的伪标签实际存在很多噪声,为了预防 single global model 对噪声过拟合,文章在蒸馏过程中应用了 stochastic weight average(SWA)。SWA采样"循环学习率"执行随机梯度下降(SGD),并对 traversed models(个人理解为model ensemble)
评论 1
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

联邦学习小白

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值