回想一下联邦学习(FL)中的FedAvg,这个算法是将每个参与方的模型的所有参数进行加权平均聚合,包括Batch Normalization(BN)的参数。
再回顾一下BN。式中µ和 σ 2 σ^2 σ2为BN统计量,是通过每个channel的空间和批次维度计算而得的running mean和running variances。γ和β为实现"变换重构"的超参数。ε用于预防分母为零。
我们知道FL的一个重要意义就在
Batch Normalization在联邦学习中的应用
最新推荐文章于 2024-05-31 09:45:14 发布