第三章 整式及其加减2
【知识点】 ※代数式的系数:
代数式中的数字中的数字因数叫做代数式的系数......。如3x,4y 的系数分别为3,4。 注意:①单个字母的系数是1,如a 的系数是1; ②只含字母因数的代数式的系数是1或-1,如-ab 的系数是-1。a 3b 的系数是1 ※代数式的项:
代数式7262--x x 表示6x 2、-2x 、-7的和,6x 2、-2x 、-7是它的项,其中把不含字母的项叫做常数项 注意:在交待某一项时,应与前面的符号一起交待。 ※单项式
由数与字母或字母与字母相乘组成的代数式叫做单项式。单独一个数或一个字母也叫单项式。 (1)单项式中的数字因数叫做单项式的系数。 (2)如果只是一个数字,系数是本身。
(3)单项式的次数:一个单项式中,所有字母的指数和叫做这个单项式的次数。 (4)单独一个非零数的次数是零。 ※多项式
几个单项式的和叫做多项式。
在多项式中,每个单项式叫做多项式的项,其中不含字母的项叫做常数项.一个多项式有几项就叫做几项式。 多项式中,次数最高的项的次数,就是这个多项式的次数. 一般说几次几项式。 ※整式
单项式和多项式统称为整式。整式是代数式的一部分,在代数式中可以包含加,减,乘,除四种运算,但在整式中除数不能含有字母。 ※同类项:
所含字母相同,并且相同字母的指数也相同的项叫做同类项。 注意:①判断几个代数式是否是同类项有两个条件:a.所含字母相同;b.相同字母的指数也相同。缺一不可; ②同类项与系数无关,与字母的排列顺序无关; ③几个常数项也是同类项。 ※合并同类项:
把代数式中的同类项合并成一项,叫做合并同类项。 ①合并同类项的理论根据是逆用乘法分配律; ②合并同类项的法则是把同类项的系数相加,所得结果作为系数,字母和字母的指数不变。 注意: ①如果两个同类项的系数互为相反数,合并同类项后结果为0; ②不是同类项的不能合并,不能合并的项,在每步运算中都要写上; ③只要不再有同类项,就是最后结果,结果还是代数式。 ※根据去括号法则去括号:
括号前面是“+”号,把括号和它前面的“+”号去掉,括号里各项都不改变符号;括号前面是“-”号去掉,括号里各项都改变符号。 ※根据分配律去括号:
括号前面是“+”号看成+1,括号前面是“-”号看成-1,根据乘法的分配律用+1或-1去乘括号里的每一项以达到去括号的目的。 ※注意: ①去括号时,要连同括号前面的符号一起去掉; ②去括号时,首先要弄清楚括号前是“+”号还是“-”号; ③改变符号时,各项都变号;不改变符号时,各项都不变号。