Bone Collector(背包问题)

Bone Collector

Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)
Total Submission(s): 105094    Accepted Submission(s): 42577


Problem Description
Many years ago , in Teddy’s hometown there was a man who was called “Bone Collector”. This man like to collect varies of bones , such as dog’s , cow’s , also he went to the grave …
The bone collector had a big bag with a volume of V ,and along his trip of collecting there are a lot of bones , obviously , different bone has different value and different volume, now given the each bone’s value along his trip , can you calculate out the maximum of the total value the bone collector can get ?

 

Input
The first line contain a integer T , the number of cases.
Followed by T cases , each case three lines , the first line contain two integer N , V, (N <= 1000 , V <= 1000 )representing the number of bones and the volume of his bag. And the second line contain N integers representing the value of each bone. The third line contain N integers representing the volume of each bone.
 

Output
One integer per line representing the maximum of the total value (this number will be less than 2 31).
 

Sample Input
  
  
1 5 10 1 2 3 4 5 5 4 3 2 1
 

Sample Output
  
  
14
 

Author
Teddy
 

Source
 

Recommend
lcy
 

Statistic |  Submit |  Discuss | Note

许多年前,在泰迪的家乡,有一个人被称为“骨头收藏家”。这个男人喜欢收集各种各样的骨头,比如狗的,牛的,还有他去了坟墓… “骨头收藏家”有一个体积为V的大袋子,沿着他的收集之旅有很多骨头,显然,不同的骨骼有不同的价值和不同的体积,现在根据他的行程给出每个骨头的值,你能计算超出骨收集器可以获得的总价值的最大值?

思路
f(i,j)表示有i件物品,背包容量为j时,可以得到的最大价值。
那么f(i,j)=max{f(i-1,j),v(i)+f(i-1,j-w(i))}
其中v(i),w(i)分别表示第i件物品的价值和重量
这个式子的含义为:对于有i件物品,背包容量为j,可以得到的最大价值等于f(i-1,j),即不取这件物品;或者v(i)+f(i-1,j-w(i)),即取这件物品,这两种可能的最大值。
再解释一下第二个
v(i)+f(i-1,j-w(i)),第i件的物品的价值,再加上剩余背包容量在不考虑i物品的情况下能取到的最大值。

#include<iostream>
using namespace std;
const int MAX=1001;
int dp(int v[],int w[],int n,int bag){
    int arr[1001]={};           //这里把二维数组压缩成以为数组
    
    for(int i=1;i<=n;i++)
        for(int j=bag;j>=w[i];j--)      //从后往前计算,因为每一个位置的值依赖与当前位置的左边位置的值
                arr[j]=arr[j]>(v[i]+arr[j-w[i]])?arr[j]:(v[i]+arr[j-w[i]]); //f(i,j)=max{f(i-1,j),v(i)+f(i-1,j-w(i))}
    return arr[bag];
}
int main(){
    int t;
    cin>>t;
    for(int i=0;i<t;i++){
        int v[MAX],w[MAX];
        int n,bag;
        cin>>n>>bag;
        for(int i=1;i<=n;i++){
            cin>>v[i];
        }
        for(int i=1;i<=n;i++){
            cin>>w[i];
        }
        cout<<dp(v,w,n,bag)<<endl;
    }
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值