动态规划解决01背包

这篇博客介绍了如何利用动态规划解决0-1背包问题,通过声明一个二维数组m来记录不同物品和背包容量下的最大价值,并给出了状态转移方程。在找到最大价值后,通过x数组回溯构造最优解。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

0-1背包问题

0-1 背包问题:给定 n 种物品和一个容量为 C 的背包,物品 i 的重量是 wi,其价值为 vi 。问:应该如何选择装入背包的物品,使得装入背包中的物品的总价值最大?

1.思路:

声明一个大小为 m[n][c] 的二维数组,m[ i ][ j ] 表示 面对第 i 件物品,且背包容量为 j 时所能获得的最大价值 ,那么我们可以很容易分析得出 m[i][j] 的计算方法:
(1) j < w[i] 的情况,这时候背包容量不足以放下第 i 件物品,只能选择不拿
m[ i ][ j ] = m[ i-1 ][ j ]

(2) j>=w[i] 的情况,这时背包容量可以放下第 i 件物品,我们就要考虑拿这件物品是否能获取更大的价值。
如果拿取,m[ i ][ j ]=m[ i-1 ][ j-w[ i ] ] + v[ i ]。 这里的m[ i-1 ][ j-w[ i ] ]指的就是考虑了i-1件物品,背包容量为j-w[i]时的最大价值,也是相当于为第i件物品腾出了w[i]的空间。

如果不拿,m[ i ][ j ] = m[ i-1 ][ j ] , 同(1)

究竟是拿还是不拿,自然是比较这两种情况那种价值最大。

2.状态转移方程:

if(j>=w[i])
m[i][j]=max(m[i-1][j],m[i-1][j-w[i]]+v[i]);
else
m[i][j]=m[i-1][j];

此为在dev中运行的代码截图
3.求最优解

由以上,可以确定的是可获得的最大价值,但是我们并不清楚具体选择哪几样物品能获得最大价值。
另起一个 x[ ] 数组,x[i]=0表示不拿,x[i]=1表示拿。m[n][c]为最优值,如果m[n][c]=m[n-1][c] ,说

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值