前言
1.“回归”一词的由来
我们不必在“回归”一词上费太多脑筋。英国著名统计学家弗朗西斯·高尔顿(Francis Galton,1822—1911)是最先应用统计方法研究两个变量之间关系问题的人。“回归”一词就是由他引入的。他对父母身高与儿女身高之间的关系很感兴趣,并致力于此方面的研究。高尔顿发现,虽然有一个趋势:父母高,儿女也高;父母矮,儿女也矮,但从平均意义上说,给定父母的身高,儿女的身高却趋同于或者说回归于总人口的平均身高。换句话说,尽管父母双亲都异常高或异常矮,儿女身高并非也普遍地异常高或异常矮,而是具有回归于人口总平均高的趋势。更直观地解释,父辈高的群体,儿辈的平均身高低于父辈的身高;父辈矮的群体,儿辈的平均身高高于其父辈的身高。用高尔顿的话说,儿辈身高的“回归”到中等身高。这就是回归一词的最初由来。
回归一词的现代解释是非常简洁的:回归时研究因变量对自变量的依赖关系的一种统计分析方法,目的是通过自变量的给定值来估计或预测因变量的均值。它可用于预测、时间序列建模以及发现各种变量之间的因果关系。
使用回归分析的益处良多,具体如下:
1) 指示自变量和因变量之间的显著关系;
2) 指示多个自变量对一个因变量的影响强度。
回归分析还可以用于比较那些通过不同计量测得的变量之间的相互影响,如价格变动与促销活动数量之间的联系。这些益处有利于市场研究人员,数据分析人员以及数据科学家排除和衡量出一组最佳的变量,用以构建预测模型。
2.为什么使用回归分析
1)更好地了解
对某一现象建模,以更好地了解该现象并有可能基于对该现象的了解来影响政策的制定以及决定采取何种相应措施。基本目标是测量一个或多个变量的变化对另一变量变化的影响程度。示例:了解某些特定濒危鸟类的主要栖息地特征(例如:降水、食物源、植被、天敌),以协助通过立法来保护该物种。
2)建模预测
对某种现象建模以预测其他地点或其他时间的数值。基本目标是构建一个持续、准确的预测模型。示例:如果已知人口增长情况和典型的天气状况,那么明年的用电量将会是多少?
3)探索检验假设
还可以使用回归分析来深入探索某些假设情况。假设您正在对住宅区的犯罪活动进行建模,以更好地了解犯罪活动并希望实施可能阻止犯罪活动的策略。开始分析时,您很可能有很多问题或想要检验的假设情况。
回归分析的作用主要有以下几点:
1)挑选与因变量相关的自变量;
2)描述因变量与自变量之间的关系强度;
3)生成模型,通过自变量来预测因变量;
4)根据模型,通过因变量,来控制自变量。