总的思路:以netcat作为flume数据源,通过push的方式将flume数据推送至spark。
idea编写flume推送数据的代码,打成jar包
step1:pom.xml依赖
<?xml version="1.0" encoding="UTF-8"?>
<project xmlns="http://maven.apache.org/POM/4.0.0" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://maven.apache.org/POM/4.0.0 http://maven.apache.org/xsd/maven-4.0.0.xsd">
<modelVersion>4.0.0</modelVersion>
<groupId>org.example</groupId>
<artifactId>myfirstspark</artifactId>
<version>1.0-SNAPSHOT</version>
<name>myfirstspark</name>
<!-- FIXME change it to the project's website -->
<url>http://www.example.com</url>
<properties>
<project.build.sourceEncoding>UTF-8</project.build.sourceEncoding>
<maven.compiler.source>1.8</maven.compiler.source>
<maven.compiler.target>1.8</maven.compiler.target>
<spark.version>2.3.4</spark.version>
</properties>
<dependencies>
<dependency>
<groupId>junit</groupId>
<artifactId>junit</artifactId>
<version>4.11</version>
<scope>test</scope>
</dependency>
<!-- https://mvnrepository.com/artifact/org.apache.spark/spark-core -->
<dependency>
<groupId>org.apache.spark</groupId>
<artifactId>spark-core_2.11</artifactId>
<version>${spark.version}</version>
</dependency>
<!-- https://mvnrepository.com/artifact/org.apache.spark/spark-streaming -->
<dependency>
<groupId>org.apache.spark</groupId>
<artifactId>spark-streaming_2.11</artifactId>
<version>${spark.version}</version>
</dependency>
<dependency>
<groupId>org.apache.spark</groupId>
<artifactId>spark-streaming-flume_2.11</artifactId>
<version>2.2.0</version>
</dependency>
</dependencies>
<build>
<plugins>
<plugin>
<groupId>org.scala-tools</groupId>
<artifactId>maven-scala-plugin</artifactId>
<version>2.15.2</version>
<executions>
<execution>
<goals>
<goal>compile</goal>
<goal>testCompile</goal>
</goals>
</execution>
</executions>
</plugin>
<plugin>
<artifactId>maven-compiler-plugin</artifactId>
<version>3.6.0</version>
<configuration>
<source>1.8</source>
<target>1.8</target>
</configuration>
</plugin>
<plugin>
<groupId>org.apache.maven.plugins</groupId>
<artifactId>maven-surefire-plugin</artifactId>
<version>2.19</version>
<configuration>
<skip>true</skip>
</configuration>
</plugin>
</plugins>
</build>
</project>
step2:编写代码
package com.sparkstreaming
import org.apache.spark.SparkConf
import org.apache.spark.streaming.{Seconds, StreamingContext}
import org.apache.spark.streaming.flume.FlumeUtils
object SparkFlumePushDemo {
def main(args: Array[String]): Unit = {
val conf = new SparkConf().setMaster("local[*]").setAppName("flumeDemo")
val ssc = new StreamingContext(conf,Seconds(5))
val flumeStream = FlumeUtils.createStream(ssc,"192.168.**.***",55555)
flumeStream.map(x=> new String(x.event.getBody.array()).trim)
.flatMap(_.split(" ")).map((_,1)).reduceByKey(_+_).print()
ssc.start()
ssc.awaitTermination()
}
}
step3:打成jar包,上传至虚拟机(jar包上传的位置,自己定,随便放)
编写flume的配置文件:conf_flumePushSpark.properties
agent.sources=s1conf_flumePushSpark.properties
agent.channels=c1
agent.sinks=k1
agent.sources.s1.type=netcat
agent.sources.s1.bind=192.168.***.***
//44444是flume数据源的端口号,这里就是netcat的端口号
agent.sources.s1.port=44444
agent.sources.s1.channels=c1
agent.channels.c1.type=memory
agent.channels.c1.capacity=1000
agent.sinks.k1.type=avro
agent.sinks.k1.hostname=192.168.***.***
//55555要和jar包中的端口号一致
agent.sinks.k1.port=55555
agent.sinks.k1.channels=c1
agent.sinks.k1.channel=c1
agent.sources.s1.channels=c1
运行方式(一定要按照这个顺序)
step1:启动flume
flume-ng agent -n agent-c conf -f /opt/flumeconf/conf_flumePushSpark.properties
step2:启动spark Streaming作业(就是启动前面的jar包)
spark-submit \
--class com.sparkstreaming.SparkFlumePushDemo \
--packages org.apache.spark:spark-streaming-flume_2.11:2.3.4 \
/opt/spark/myfirstspark-1.0-SNAPSHOT.jar
step3:netcat连接44444的端口,并发送数据
nc -lk 44444
回车,然后输入数据,此时spark Streaming作业窗口,就会进行worldcount统计