蓝桥杯历届真题-错误票据


标题:错误票据

    某涉密单位下发了某种票据,并要在年终全部收回。

    每张票据有唯一的ID号。全年所有票据的ID号是连续的,但ID的开始数码是随机选定的。

    因为工作人员疏忽,在录入ID号的时候发生了一处错误,造成了某个ID断号,另外一个ID重号。

    你的任务是通过编程,找出断号的ID和重号的ID。

    假设断号不可能发生在最大和最小号。

要求程序首先输入一个整数N(N<100)表示后面数据行数。
接着读入N行数据。
每行数据长度不等,是用空格分开的若干个(不大于100个)正整数(不大于100000)
每个整数代表一个ID号。

要求程序输出1行,含两个整数m n,用空格分隔。
其中,m表示断号ID,n表示重号ID

例如:
用户输入:
2
5 6 8 11 9 
10 12 9

则程序输出:
7 9


再例如:
用户输入:
6
164 178 108 109 180 155 141 159 104 182 179 118 137 184 115 124 125 129 168 196
172 189 127 107 112 192 103 131 133 169 158 
128 102 110 148 139 157 140 195 197
185 152 135 106 123 173 122 136 174 191 145 116 151 143 175 120 161 134 162 190
149 138 142 146 199 126 165 156 153 193 144 166 170 121 171 132 101 194 187 188
113 130 176 154 177 120 117 150 114 183 186 181 100 163 160 167 147 198 111

### 蓝桥杯六角填数问题的解法 #### 问题描述 蓝桥杯中的“六角填数”问题是要求在一个特定形状的六边形结构中填充数字,使每一条直线上数字之和相等。题目通常会预先设定部分数值,并要求求解某个未知位置的具体值。 --- #### 解题思路 该问题可以通过深度优先搜索 (DFS) 来解决。以下是具体的实现方法: 1. **初始化变量** 定义数组 `a` 存储当前状态下的数字分布,定义布尔型数组 `book` 记录哪些数字已被使用过。初始状态下,已知的位置被固定赋值并标记为不可重复选取[^1]。 2. **递归函数设计** 使用递归函数 `dfs(x)` 表示尝试填充第 `x` 个位置的数字。当所有位置都被成功填充时,验证是否满足条件——即每条直线上的数字总和一致。如果符合条件,则打印目标位置的结果。 3. **剪枝优化** 在每次递归调用前加入必要的约束条件以减少不必要的分支探索。例如,在某些特殊节点处提前终止递归可以显著提高效率[^2]。 4. **最终输出结果** 当找到合法配置后,直接提取所需的目标位置值作为答案返回。 --- #### 实现代码 下面提供了一个完整的 C 语言版本解决方案: ```c #include <stdio.h> #define N 15 int a[N]; int book[N]; void dfs(int x) { if (x == 1 || x == 2 || x == 12) { // 预设固定的三个点跳过处理 dfs(x + 1); return; } if (x > 12) { // 所有点均已完成分配 int t[6]; // 计算六个方向线段上的合计值 t[0] = a[1] + a[3] + a[6] + a[8]; t[1] = a[1] + a[4] + a[7] + a[11]; t[2] = a[2] + a[3] + a[4] + a[5]; t[3] = a[2] + a[6] + a[9] + a[12]; t[4] = a[8] + a[9] + a[10] + a[11]; t[5] = a[12] + a[10] + a[7] + a[5]; for (int i = 1; i < 6; ++i) { if (t[i] != t[i - 1]) { // 如果任意两组不匹配则退出本次试探 return; } } printf("%d\n", a[6]); // 输出第六位对应的星号位置值 return; } for (int i = 1; i <= 12; ++i) { if (!book[i]) { // 尝试未使用的候选数字 book[i] = 1; a[x] = i; dfs(x + 1); book[i] = 0; // 回溯恢复现场供后续测试其他可能性 } } } int main() { memset(book, 0, sizeof(book)); book[1] = 1; a[1] = 1; // 初始化第一个预置点 book[8] = 1; a[2] = 8; // 初始化第二个预置点 book[3] = 1; a[12] = 3; // 初始化第三个预置点 dfs(1); // 开始回溯算法流程 return 0; } ``` 此代码片段实现了基于 DFS 的穷举策略来寻找可能的答案集合之一[^3]。 --- #### 结果解释 运行以上程序将会得到多个潜在解答路径中的有效方案,并从中抽取指定位置(通常是编号为6的那个单元格)内的具体数值呈现出来。 ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值