POJ1947:树形DP

POJ1947

题解

  • 总共有n个结点的树,最少删去几条边,变成含有m个结点的子树。
  • dp[i][j]表示以i为根,含j个结点的树,最少需要删去的边数。
  • 状态转移:
  • dp[u][i] = min(dp[u][i],dp[u][i-j] + dp[v][j] - 1);
  • 表示v这个子节点必须接上,所以不能删去u--v这一条边,所以删去数减1.

代码

#include <iostream>
#include <cstdio>
#include <algorithm>
#include <cstring>
#include <cmath>
#include <vector>
using namespace std;
int const inf = 0x3f3f3f3f;
int const N = 150 + 10;
int n,p;
int dp[N][N],in[N];
vector<int>G[N];
void dfs(int u,int fa){
	dp[u][1] = G[u].size();
	for(int k=0;k<G[u].size();k++){
		int v = G[u][k];
		if(v == fa)	continue;
		dfs(v,u);
		for(int i=p;i>=1;i--){
			for(int j=1;j<i;j++)
				dp[u][i] = min(dp[u][i],dp[u][i-j] + dp[v][j] - 1);
		}
	}
}
int main(){
	scanf("%d%d",&n,&p);
	for(int i=1;i<n;i++){
		int u,v;
		scanf("%d%d",&u,&v);   //u是v的父节点
		G[u].push_back(v);
		in[v]++;
	}
	memset(dp,inf,sizeof(dp));
	for(int root=1;root<=n;root++){
		if(in[root] == 0){
			dfs(root,0);
			int ans = dp[root][p];
			for(int j=1;j<=n;j++)
				ans = min(ans,dp[j][p] + 1);  //注意节点向上连也要被删去
			printf("%d\n",ans);
			return 0;
		}
	}
	return 0;
}

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值