在概率论或信息论中,KL散度( Kullback–Leibler divergence),又称相对熵(relative entropy),是描述两个概率分布P和Q差异的一种方法。它是非对称的,这意味着D(P||Q) ≠ D(Q||P)。特别的,在信息论中,D(P||Q)表示当用概率分布Q来拟合真实分布P时,产生的信息损耗,其中P表示真实分布,Q表示P的拟合分布。
VGG16
Resnet50 Bottleneck3463
Inception-V3
<
在概率论或信息论中,KL散度( Kullback–Leibler divergence),又称相对熵(relative entropy),是描述两个概率分布P和Q差异的一种方法。它是非对称的,这意味着D(P||Q) ≠ D(Q||P)。特别的,在信息论中,D(P||Q)表示当用概率分布Q来拟合真实分布P时,产生的信息损耗,其中P表示真实分布,Q表示P的拟合分布。
VGG16
Resnet50 Bottleneck3463
Inception-V3
<