1.夹逼准则
定义:设{ana_nan}, {bnb_nbn}, {cnc_ncn}为实数列,an≤bn≤cna_n≤b_n≤c_nan≤bn≤cn, 且
limn→∞an=limn→∞cn=l \lim_{n \to \infty} a_n= \lim_{n \to \infty} c_n= l n→∞liman=n→∞limcn=l, 则limn→∞bn=l \lim_{n \to \infty} b_n=ln→∞limbn=l
例1:limn→∞(1n2+1+1n2+1+......+1n2+n) \lim_{n \to \infty} (\frac{1}{\sqrt{n^2+1}} +\frac{1}{\sqrt{n^2+1}}+......+\frac{1}{\sqrt{n^2+n}}) n→∞lim(n2+11+n2+11+......+n2+n1)
解:令bn=1n2+1+1n2+1+......+1n2+nb_n=\frac{1}{\sqrt{n^2+1}} +\frac{1}{\sqrt{n^2+1}}+......+\frac{1}{\sqrt{n^2+n}}bn=n2+11+n2+11+......+n2+n1
由58<57<56 \frac{5}{8}<\frac{5}{7}<\frac{5}{6}85<75<65,
可得出思路:
令an=1n2+n+1n2+n+......+1n2+na^n=\frac{1}{\sqrt{n^2+n}} +\frac{1}{\sqrt{n^2+n}}+......+\frac{1}{\sqrt{n^2+n}}an=n2+n1+n2+n1+......+n2+n1
cn=1n2+1+1n2+1+......+1n2+1c^n=\frac{1}{\sqrt{n^2+1}} +\frac{1}{\sqrt{n^2+1}}+......+\frac{1}{\sqrt{n^2+1}}cn=n2+11+n2+11+......+n2+11
则:limn→∞an=limn→∞nn2+n=limn→∞nn2=1 \lim_{n \to \infty} a_n= \lim_{n \to \infty} \frac{n}{\sqrt{n^2+n}} = \lim_{n \to \infty} \frac{n}{\sqrt{n^2}} =1n→∞liman=n→∞limn2+nn=n→∞limn2n=1
limn→∞cn=limn→∞nn2+1=limn→∞nn2=1 \lim_{n \to \infty} c_n= \lim_{n \to \infty} \frac{n}{\sqrt{n^2+1}} = \lim_{n \to \infty} \frac{n}{\sqrt{n^2}} =1n→∞limcn=n→∞limn2+1n=n→∞limn2n=1
∵limn→∞an=limn→∞cn=1 \lim_{n \to \infty} a_n= \lim_{n \to \infty} c_n= 1 n→∞liman=n→∞limcn=1 ,且an≤bn≤cna_n≤b_n≤c_nan≤bn≤cn,所以
limn→∞bn=1 \lim_{n \to \infty} b_n= 1 n→∞limbn=1
2.两个重要极限
2.1 00型⟹limx→0sinxx=1 \frac{0}{0} 型\Longrightarrow \lim_{x \to 0} \frac{sinx}{x} = 1 00型⟹x→0limxsinx=1
通用公式: limx→0sin△△=1 \lim_{x \to 0} \frac{sin△}{△} = 1 x→0lim△sin△=1
例1: limx→0sin3xx \lim_{x \to 0} \frac{sin3x}{x} x→0limxsin3x
解: limx→0sin3xx=limx→0sin3x3x⋅3=1⋅3=3 \lim_{x \to 0} \frac{sin3x}{x} = \lim_{x \to 0} \frac{sin3x}{3x}·3 = 1·3 = 3x→0limxsin3x=x→0lim3xsin3x⋅3=1⋅3=3
对于00型 \frac{0}{0} 型00型后面可以使用洛必达法则求极限
2.2第二重要极限
limx→∞(1+1x)x=e或limx→0(1+x)1x=e \lim_{x \to ∞} (1+\frac{1}{x})^x=e 或 \lim_{x \to 0} (1+x)^\frac{1}{x}=ex→∞lim(1+x1)x=e或x→0lim(1+x)x1=e
通用公式:1x⟹lim△→0(1+△)1△=e\frac{1}{x}\Longrightarrow \lim_{△ \to 0} (1+△)^\frac{1}{△}=ex1⟹△→0lim(1+△)△1=e
例1:limx→0(1−2x)1x,求其极限值? \lim_{x \to 0} (1-2x)^\frac{1}{x},求其极限值? x→0lim(1−2x)x1,求其极限值?,求其极限值?
解:将x=0代入:可判断为1∞型将x=0代入:可判断为1^∞型将x=0代入:可判断为1∞型
所以要用第二极限求解:
limx→0(1−2x)1x=limx→0[1+(−2x)]1−2x⋅−2x⋅1x=limx→0e−2x⋅1x=e−2
\begin{align*}
\lim_{x \to 0} (1-2x)^\frac{1}{x} & = \lim_{x \to 0} [1+(-2x)]^{\frac{1}{-2x}·-2x· \frac{1}{x}} \\
& = \lim_{x \to 0} e^{-2x· \frac{1}{x}} \\
& = e^{-2} \\
\end{align*}
x→0lim(1−2x)x1=x→0lim[1+(−2x)]−2x1⋅−2x⋅x1=x→0lime−2x⋅x1=e−2