极限02:两个重要极限

1.夹逼准则

定义:设{ana_nan}, {bnb_nbn}, {cnc_ncn}为实数列,an≤bn≤cna_n≤b_n≤c_nanbncn, 且
lim⁡n→∞an=lim⁡n→∞cn=l \lim_{n \to \infty} a_n= \lim_{n \to \infty} c_n= l nliman=nlimcn=l, 则lim⁡n→∞bn=l \lim_{n \to \infty} b_n=lnlimbn=l

例1:lim⁡n→∞(1n2+1+1n2+1+......+1n2+n) \lim_{n \to \infty} (\frac{1}{\sqrt{n^2+1}} +\frac{1}{\sqrt{n^2+1}}+......+\frac{1}{\sqrt{n^2+n}}) nlim(n2+11+n2+11+......+n2+n1)

解:令bn=1n2+1+1n2+1+......+1n2+nb_n=\frac{1}{\sqrt{n^2+1}} +\frac{1}{\sqrt{n^2+1}}+......+\frac{1}{\sqrt{n^2+n}}bn=n2+11+n2+11+......+n2+n1

58<57<56 \frac{5}{8}<\frac{5}{7}<\frac{5}{6}85<75<65,
可得出思路:
an=1n2+n+1n2+n+......+1n2+na^n=\frac{1}{\sqrt{n^2+n}} +\frac{1}{\sqrt{n^2+n}}+......+\frac{1}{\sqrt{n^2+n}}an=n2+n1+n2+n1+......+n2+n1
cn=1n2+1+1n2+1+......+1n2+1c^n=\frac{1}{\sqrt{n^2+1}} +\frac{1}{\sqrt{n^2+1}}+......+\frac{1}{\sqrt{n^2+1}}cn=n2+11+n2+11+......+n2+11

则:lim⁡n→∞an=lim⁡n→∞nn2+n=lim⁡n→∞nn2=1 \lim_{n \to \infty} a_n= \lim_{n \to \infty} \frac{n}{\sqrt{n^2+n}} = \lim_{n \to \infty} \frac{n}{\sqrt{n^2}} =1nliman=nlimn2+nn=nlimn2n=1

lim⁡n→∞cn=lim⁡n→∞nn2+1=lim⁡n→∞nn2=1 \lim_{n \to \infty} c_n= \lim_{n \to \infty} \frac{n}{\sqrt{n^2+1}} = \lim_{n \to \infty} \frac{n}{\sqrt{n^2}} =1nlimcn=nlimn2+1n=nlimn2n=1
lim⁡n→∞an=lim⁡n→∞cn=1 \lim_{n \to \infty} a_n= \lim_{n \to \infty} c_n= 1 nliman=nlimcn=1 ,且an≤bn≤cna_n≤b_n≤c_nanbncn,所以
lim⁡n→∞bn=1 \lim_{n \to \infty} b_n= 1 nlimbn=1

2.两个重要极限

2.1 00型⟹lim⁡x→0sinxx=1 \frac{0}{0} 型\Longrightarrow \lim_{x \to 0} \frac{sinx}{x} = 1 00x0limxsinx=1

通用公式: lim⁡x→0sin△△=1 \lim_{x \to 0} \frac{sin△}{△} = 1 x0limsin=1

例1: lim⁡x→0sin3xx \lim_{x \to 0} \frac{sin3x}{x} x0limxsin3x
解: lim⁡x→0sin3xx=lim⁡x→0sin3x3x⋅3=1⋅3=3 \lim_{x \to 0} \frac{sin3x}{x} = \lim_{x \to 0} \frac{sin3x}{3x}·3 = 1·3 = 3x0limxsin3x=x0lim3xsin3x3=13=3

对于00型 \frac{0}{0} 型00后面可以使用洛必达法则求极限

2.2第二重要极限

lim⁡x→∞(1+1x)x=e或lim⁡x→0(1+x)1x=e \lim_{x \to ∞} (1+\frac{1}{x})^x=e 或 \lim_{x \to 0} (1+x)^\frac{1}{x}=exlim(1+x1)x=ex0lim(1+x)x1=e

通用公式:1x⟹lim⁡△→0(1+△)1△=e\frac{1}{x}\Longrightarrow \lim_{△ \to 0} (1+△)^\frac{1}{△}=ex10lim(1+)1=e

例1:lim⁡x→0(1−2x)1x,求其极限值? \lim_{x \to 0} (1-2x)^\frac{1}{x},求其极限值? x0lim(12x)x1,求其极限值?,求其极限值?
解:将x=0代入:可判断为1∞型将x=0代入:可判断为1^∞型x=0代入:可判断为1
所以要用第二极限求解:
lim⁡x→0(1−2x)1x=lim⁡x→0[1+(−2x)]1−2x⋅−2x⋅1x=lim⁡x→0e−2x⋅1x=e−2 \begin{align*} \lim_{x \to 0} (1-2x)^\frac{1}{x} & = \lim_{x \to 0} [1+(-2x)]^{\frac{1}{-2x}·-2x· \frac{1}{x}} \\ & = \lim_{x \to 0} e^{-2x· \frac{1}{x}} \\ & = e^{-2} \\ \end{align*} x0lim(12x)x1=x0lim[1+(2x)]2x12xx1=x0lime2xx1=e2

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值