Python中完善decorator

本文详细探讨了Python装饰器的工作原理,包括如何使用@decorator语法修改函数的行为,同时保持函数元信息如名称和文档字符串不变。通过使用functools.wraps,可以避免装饰器对函数元信息的影响,并提供了带参数的装饰器实例。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

@decorator可以动态实现函数功能的增加,但是,经过@decorator“改造”后的函数,和原函数相比,除了功能多一点外,有没有其它不同的地方?

在没有decorator的情况下,打印函数名:

def f1(x):
    pass
print f1.__name__

输出: f1

有decorator的情况下,再打印函数名:

def log(f):
    def wrapper(*args, **kw):
        print 'call...'
        return f(*args, **kw)
    return wrapper
@log
def f2(x):
    pass
print f2.__name__

输出: wrapper

可见,由于decorator返回的新函数函数名已经不是'f2',而是@log内部定义的'wrapper'。这对于那些依赖函数名的代码就会失效。decorator还改变了函数的__doc__等其它属性。如果要让调用者看不出一个函数经过了@decorator的“改造”,就需要把原函数的一些属性复制到新函数中:

def log(f):
    def wrapper(*args, **kw):
        print 'call...'
        return f(*args, **kw)
    wrapper.__name__ = f.__name__
    wrapper.__doc__ = f.__doc__
    return wrapper

这样写decorator很不方便,因为我们也很难把原函数的所有必要属性都一个一个复制到新函数上,所以Python内置的functools可以用来自动化完成这个“复制”的任务:

import functools
def log(f):
    @functools.wraps(f)
    def wrapper(*args, **kw):
        print 'call...'
        return f(*args, **kw)
    return wrapper

最后需要指出,由于我们把原函数签名改成了(*args, **kw),因此,无法获得原函数的原始参数信息。即便我们采用固定参数来装饰只有一个参数的函数:

def log(f):
    @functools.wraps(f)
    def wrapper(x):
        print 'call...'
        return f(x)
    return wrapper

也可能改变原函数的参数名,因为新函数的参数名始终是 'x',原函数定义的参数名不一定叫 'x'。

 实例1. 请思考带参数的@decorator,@functools.wraps应该放置在哪:

def performance(unit):
    def perf_decorator(f):
        def wrapper(*args, **kw):
            ???
        return wrapper
    return perf_decorator
import time, functools

def performance(unit):
    def perf_decorator(f):
        @functools.wraps(f)
        def wrapper(*args, **kw):
            t1 = time.time()
            r = f(*args, **kw)
            t2 = time.time()
            t = (t2 - t1) * 1000 if unit=='ms' else (t2 - t1)
            print ('call %s() in %f %s' % (f.__name__, t, unit))
            return r
        return wrapper
    return perf_decorator

@performance('ms')
def factorial(n):
    return reduce(lambda x,y: x*y, range(1, n+1))

print (factorial.__name__)

#输出结果
factorial

 

内容概要:该研究通过在黑龙江省某示范村进行24小时实地测试,比较了燃煤炉具与自动/手动进料生物质炉具的污染物排放特征。结果显示,生物质炉具相比燃煤炉具显著降低了PM2.5、CO和SO2的排放(自动进料分别降低41.2%、54.3%、40.0%;手动进料降低35.3%、22.1%、20.0%),但NOx排放未降低甚至有所增加。研究还发现,经济性和便利性是影响生物质炉具推广的重要因素。该研究不仅提供了实际排放数据支持,还通过Python代码详细复现了排放特征比较、减排效果计算和结果可视化,进一步探讨了燃料性质、动态排放特征、碳平衡计算以及政策建议。 适合人群:从事环境科学研究的学者、政府环保部门工作人员、能源政策制定者、关注农村能源转型的社会人士。 使用场景及目标:①评估生物质炉具在农村地区的推广潜力;②为政策制定者提供科学依据,优化补贴政策;③帮助研究人员深入了解生物质炉具的排放特征和技术改进方向;④为企业研发更高效的生物质炉具提供参考。 其他说明:该研究通过大量数据分析和模拟,揭示了生物质炉具在实际应用中的优点和挑战,特别是NOx排放增加的问题。研究还提出了多项具体的技术改进方向和政策建议,如优化进料方式、提高热效率、建设本地颗粒厂等,为生物质炉具的广泛推广提供了可行路径。此外,研究还开发了一个智能政策建议生成系统,可以根据不同地区的特征定制化生成政策建议,为农村能源转型提供了有力支持。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值