题目:螺旋矩阵
给定一个包含 m x n 个元素的矩阵(m 行, n 列),请按照顺时针螺旋顺序,返回矩阵中的所有元素。
示例:
输入:
[[ 1, 2, 3 ],
[ 4, 5, 6 ],
[ 7, 8, 9 ]]
输出: [1,2,3,6,9,8,7,4,5]
输入:
[[1, 2, 3, 4],
[5, 6, 7, 8],
[9,10,11,12]]
输出: [1,2,3,4,8,12,11,10,9,5,6,7]
---------------------------------------------------------------------------------
解法1:通过设定限制条件改变方向,来逐个遍历 (超时)
class Solution(object):
def spiralOrder(self, matrix):
"""
:type matrix: List[List[int]]
:rtype: List[int]
"""
m = len(matrix)
if m == 0: # matrix为空
return []
if m == 1: # matrix只有一个元素
return matrix[0]
n = len(matrix[0])
if n == 0: # matrix中的元素为空
return []
i, j = 0, 0 # 元素的下标
count = 1 # 记录添加的元素数量
direction = "R" # 初始方向向右 Right
li = [] # 添加元素的容器
while count <= m*n:
li.append(matrix[i][j])
matrix[i][j] = "MARK"
if direction == "R":
j += 1
# 向右的终止条件:1.j=n 碰到右壁,2.碰到之前的元素XXX
if j == n or matrix[i][j] == "MARK":
i += 1
j -= 1
direction = "D" # 更改方向为向下Down
elif direction == "D":
i += 1
# 向下的终止条件:1.i=m 碰到底壁,2.碰到之前的元素XXX
if i == m or matrix[i][j] == "MARK":
i -= 1
j -= 1
direction = "L" # 更改方向为向左Left
elif direction == "L":
j -= 1
# 向左的终止条件:1.j=0 碰到左壁,2.碰到之前的元素XXX
if j < 0 or matrix[i][j] == "MARK":
j += 1
i -= 1
direction = "U" # 更改方向为向上Up
elif direction == "U":
i -= 1
# 向上的终止条件:1.i=0 碰到上壁,2.碰到之前的元素XXX
if i < 0 or matrix[i][j] == "MARK":
i += 1
j += 1
direction = "R"
return li
解法2:网友 “家养家养” 使用了 “方向变量” 来处理
class Solution(object):
def spiralOrder(self, matrix):
"""
:type matrix: List[List[int]]
:rtype: List[int]
"""
m = len(matrix)
if m == 0: # matrix为空
return []
if m == 1: # matrix只有一个元素
return matrix[0]
n = len(matrix[0])
if n == 0: # matrix中的元素为空
return []
li = []
i, j, di, dj = 0, 0, 0, 1
for _ in range(m*n):
li.append(matrix[i][j])
matrix[i][j] = "MARK"
# 再次回到 "MARK" 值时,就说明该转向了
if matrix[(i+di) % m][(j+dj) % n] == "MARK":
# 0 1 变 1 0, 1 0 变 0 -1, 0 -1 变 -1, 0, -1 0 变 0 1
di, dj = dj, -di
i += di
j += dj
return li
参考:
https://blog.youkuaiyun.com/qq_32424059/article/details/89035390
https://blog.youkuaiyun.com/weixin_41958153/article/details/81213618
https://blog.youkuaiyun.com/qq_32424059/article/details/89035106