ModelCheckpoint:
keras.callbacks.ModelCheckpoint(filepath,monitor='val_loss',verbose=0,save_best_only=False, save_weights_only=False, mode='auto', period=1)
参数:
- filename:字符串,保存模型的路径(可以将模型的准确率和损失等写到路径中,格式如下:)
ModelCheckpoint('model_check/'+'ep{epoch:d}-acc{acc:.3f}-val_acc{val_acc:.3f}.h5',monitor='val_loss')
还可以添加损失值等如
‘loss{loss:.3f}-val_loss{val_loss:.3f}’
- monitor:需要检测的值如测试集损失或者训练集损失等
- save_best_only:当设置为True时,监测值有改进时才会保存当前的模型
- verbose:信息展示模式,0或1(当为1时会有如下矩形框的信息提示)
- mode:‘auto’,‘min’,‘max’之一,在save_best_only=True时决定性能最佳模型的评判准则,例如,当监测值为val_acc时,模式应为max,当监测值为val_loss时,模式应为min。在auto模式下,评价准则由被监测值的名字自动推断。
- save_weights_only:若设置为True,则只保存模型权重,否则将保存整个模型
- period:CheckPoint之间的间隔的epoch数
参考代码如下:
在使用时传递给fit中callbacks即可
checkpoint = ModelCheckpoint(log_dir + "ep{epoch:03d}-loss{loss:.3f}-
val_loss{val_loss:.3f}.h5",
monitor='val_loss', save_weights_only=True,
save_best_only=True, period=1)
train_history=model.fit_generator(data_generator_wrap(),
steps_per_epoch=max(1, num_train//batch_size),
validation_data=data_generator_wrap(),
validation_steps=max(1, num_val//batch_size),
epochs=40,
initial_epoch=0,callbacks=[logging, reduce_lr,checkpoint])
ReduceLROnPlateau:
keras.callbacks.ReduceLROnPlateau(monitor='val_loss', factor=0.1, patience=10, verbose=0, mode='auto', epsilon=0.0001, cooldown=0, min_lr=0)
当评价指标不在提升时,减少学习率
当学习停滞时,减少2倍或10倍的学习率常常能获得较好的效果。该回调函数检测指标的情况,如果在patience
个epoch中看不到模型性能提升,则减少学习率
参数
- monitor:被监测的量
- factor:每次减少学习率的因子,学习率将以
lr = lr*factor
的形式被减少 - patience:当patience个epoch过去而模型性能不提升时,学习率减少的动作会被触发
- mode:‘auto’,‘min’,‘max’之一,在
min
模式下,如果检测值触发学习率减少。在max
模式下,当检测值不再上升则触发学习率减少。 - epsilon:阈值,用来确定是否进入检测值的“平原区”
- cooldown:学习率减少后,会经过cooldown个epoch才重新进行正常操作
- min_lr:学习率的下限
参考代码如下:
reduce_lr = ReduceLROnPlateau(monitor='val_loss', factor=0.1, patience=3, verbose=1)
train_history = model.fit(data(),validation_data=datae_g(),epochs=40,callbacks=[logging, reduce_lr, checkpoint])
EarlyStopping
keras.callbacks.EarlyStopping(monitor='val_loss', patience=0, verbose=0, mode='auto')
当监测值不再改善时,该回调函数将中止训练
参数
-
monitor:需要监视的量
-
patience:当early stop被激活(如发现loss相比上一个epoch训练没有下降),则经过
patience
个epoch后停止训练。 -
verbose:信息展示模式
-
mode:‘auto’,‘min’,‘max’之一,在
min
模式下,如果检测值停止下降则中止训练。在max
模式下,当检测值不再上升则停止训练。