07NumPy学习——迭代数组

本文深入探讨了NumPy中的迭代器对象numpy.nditer,讲解了如何使用它灵活地访问一个或多个数组元素,包括控制遍历顺序、修改数组元素值、使用外部循环以及广播迭代等高级用法。

NumPy 迭代器对象 numpy.nditer 提供了一种灵活访问一个或者多个数组元素的方式。

迭代器最基本的任务的可以完成对数组元素的访问。

接下来我们使用 arange() 函数创建一个 2X3 数组,并使用 nditer 对它进行迭代。

import numpy as np
 
a = np.arange(6).reshape(2,3)
print ('原始数组是:')
print (a)
print ('\n')
print ('迭代输出元素:')
for x in np.nditer(a):
    print (x, end=", " )

输出结果为:
原始数组是:
[ [0 1 2]
  [3 4 5] ]

迭代输出元素:
0, 1, 2, 3, 4, 5,

以上实例不是使用标准 C 或者 Fortran 顺序,选择的顺序是和数组内存布局一致的,这样做是为了提升访问的效率,默认是行序优先(row-major order,或者说是 C-order)。

这反映了默认情况下只需访问每个元素,而无需考虑其特定顺序。我们可以通过迭代上述数组的转置来看到这一点,并与以 C 顺序访问数组转置的 copy 方式做对比,如下实例:

import numpy as np
 
a = np.arange(6).reshape(2,3)

print('原数组是:')
print(a)
print('\n')

for x in np.nditer(a.T):
    print (x, end=", " )
print ('\n')
 
for x in np.nditer(a.T.copy(order='C')):
    print (x, end=", " )

输出结果为:
原数组是:
[ [0 1 2]
  [3 4 5] ]

0, 1, 2, 3, 4, 5,

0, 3, 1, 4, 2, 5,

从上述例子可以看出,a 和 a.T 的遍历顺序是一样的,也就是他们在内存中的存储顺序也是一样的,但是 a.T.copy(order = ‘C’) 的遍历结果是不同的,那是因为它和前两种的存储方式是不一样的,默认是按行访问。

控制遍历顺序

  • for x in np.nditer(a, order=‘F’):Fortran order,即是列序优先;
  • for x in np.nditer(a.T, order=‘C’):C order,即是行序优先;
import numpy as np
 
a = np.arange(0,60,5).reshape(3,4)

print ('原始数组是:') 
print (a) 
print ('\n')

print ('原始数组的转置是:') 
b = a.T 
print (b) 
print ('\n')

print ('以 C 风格顺序排序:') 
c = b.copy(order='C')  
print (c)
for x in np.nditer(c):  
    print (x, end=", " )
print  ('\n') 

print  ('以 F 风格顺序排序:')
c = b.copy(order='F')  
print (c)
for x in np.nditer(c):  
    print (x, end=", " )

输出结果为:
原始数组是:
[ [ 0 5 10 15]
  [20 25 30 35]
  [40 45 50 55] ]

原始数组的转置是:
[ [ 0 20 40]
  [ 5 25 45]
  [10 30 50]
  [15 35 55] ]

以 C 风格顺序排序:
[ [ 0 20 40]
  [ 5 25 45]
  [10 30 50]
  [15 35 55] ]
0, 20, 40, 5, 25, 45, 10, 30, 50, 15, 35, 55,

以 F 风格顺序排序:
[ [ 0 20 40]
  [ 5 25 45]
  [10 30 50]
  [15 35 55] ]
0, 5, 10, 15, 20, 25, 30, 35, 40, 45, 50, 55,

可以通过显式设置,来强制 nditer 对象使用某种顺序:

import numpy as np 
 
a = np.arange(0,60,5) 
a = a.reshape(3,4)  
print ('原始数组是:')
print (a)
print ('\n')
print ('以 C 风格顺序排序:')
for x in np.nditer(a, order =  'C'):  
    print (x, end=", " )
print ('\n')
print ('以 F 风格顺序排序:')
for x in np.nditer(a, order =  'F'):  
    print (x, end=", " )

输出结果为:
原始数组是:
[ [ 0 5 10 15]
  [20 25 30 35]
  [40 45 50 55] ]

以 C 风格顺序排序:
0, 5, 10, 15, 20, 25, 30, 35, 40, 45, 50, 55,

以 F 风格顺序排序:
0, 20, 40, 5, 25, 45, 10, 30, 50, 15, 35, 55,

修改数组中元素的值
nditer 对象有另一个可选参数 op_flags。 默认情况下,nditer 将视待迭代遍历的数组为只读对象(read-only),为了在遍历数组的同时,实现对数组元素值得修改,必须指定 read-write 或者 write-only 的模式。

import numpy as np
 
a = np.arange(0,60,5) 
a = a.reshape(3,4)  
print ('原始数组是:')
print (a)
print ('\n')
for x in np.nditer(a, op_flags=['readwrite']): 
    x[...]=2*x 
print ('修改后的数组是:')
print (a)

输出结果为:
原始数组是:
[ [ 0 5 10 15]
  [20 25 30 35]
  [40 45 50 55] ]

修改后的数组是:
[ [ 0 10 20 30]
  [ 40 50 60 70]
  [ 80 90 100 110] ]

使用外部循环
nditer类的构造器拥有flags参数,它可以接受下列值:

参数描述
c_index可以跟踪 C 顺序的索引
f_index可以跟踪 Fortran 顺序的索引
multi-index每次迭代可以跟踪一种索引类型
external_loop给出的值是具有多个值的一维数组,而不是零维数组

在下面的实例中,迭代器遍历对应于每列,并组合为一维数组。

import numpy as np 

a = np.arange(0,60,5) 
a = a.reshape(3,4)  
print ('原始数组是:')
print (a)
print ('\n')
print ('修改后的数组是:')
for x in np.nditer(a, flags =  ['external_loop'], order =  'F'):  
   print (x, end=", " )

输出结果为:
原始数组是:
[ [ 0 5 10 15]
  [20 25 30 35]
  [40 45 50 55] ]

修改后的数组是:
[ 0 20 40], [ 5 25 45], [10 30 50], [15 35 55],

广播迭代

如果两个数组是可广播的,nditer 组合对象能够同时迭代它们。 假设数组 a 的维度为 3X4,数组 b 的维度为 1X4 ,则使用以下迭代器(数组 b 被广播到 a 的大小)。

import numpy as np 
 
a = np.arange(0,60,5) 
a = a.reshape(3,4)  
print  ('第一个数组为:')
print (a)
print  ('\n')
print ('第二个数组为:')
b = np.array([1,  2,  3,  4], dtype =  int)  
print (b)
print ('\n')
print ('修改后的数组为:')
for x,y in np.nditer([a,b]):  
    print ("%d:%d"  %  (x,y), end=", " )

输出结果为:
第一个数组为:
[ [ 0 5 10 15]
  [20 25 30 35]
  [40 45 50 55] ]

第二个数组为:
[1 2 3 4]

修改后的数组为:
0:1, 5:2, 10:3, 15:4, 20:1, 25:2, 30:3, 35:4, 40:1,

内容概要:本文系统介绍了算术优化算法(AOA)的基本原理、核心思想及Python实现方法,并通过图像分割的实际案例展示了其应用价值。AOA是一种基于种群的元启发式算法,其核心思想来源于四则运算,利用乘除运算进行全局勘探,加减运算进行局部开发,通过数学优化器加速函数(MOA)和数学优化概率(MOP)动态控制搜索过程,在全局探索与局部开发之间实现平衡。文章详细解析了算法的初始化、勘探与开发阶段的更新策略,并提供了完整的Python代码实现,结合Rastrigin函数进行测试验证。进一步地,以Flask框架搭建前后端分离系统,将AOA应用于图像分割任务,展示了其在实际工程中的可行性与高效性。最后,通过收敛速度、寻优精度等指标评估算法性能,并提出自适应参数调整、模型优化和并行计算等改进策略。; 适合人群:具备一定Python编程基础和优化算法基础知识的高校学生、科研人员及工程技术人员,尤其适合从事人工智能、图像处理、智能优化等领域的从业者;; 使用场景及目标:①理解元启发式算法的设计思想与实现机制;②掌握AOA在函数优化、图像分割等实际问题中的建模与求解方法;③学习如何将优化算法集成到Web系统中实现工程化应用;④为算法性能评估与改进提供实践参考; 阅读建议:建议读者结合代码逐行调试,深入理解算法流程中MOA与MOP的作用机制,尝试在不同测试函数上运行算法以观察性能差异,并可进一步扩展图像分割模块,引入更复杂的预处理或后处理技术以提升分割效果。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值