tf.feature_column的使用记录

tf.feature_column使用,可用线性模型或者序列模型

features = {
    'user_item': [["A","B","-1"], 
                  ["A","B","A"], 
                  ["A","B","B"], 
                  ["C","B","C"]],
    }

# 线性模型
user_item = tf.feature_column.categorical_column_with_vocabulary_list(key="user_item",
                                                                               vocabulary_list=("A","B","C"),
#                                                                                default_value=-1,
                                                                               num_oov_buckets=2)
columns = tf.feature_column.indicator_column(user_item)
inputs = tf.compat.v1.feature_column.input_layer(features, columns)
print(inputs)



# 序列模型使用
user_seq_item = tf.feature_column.sequence_categorical_column_with_vocabulary_list(key="user_item",
                                                                               vocabulary_list=("A","B","C"),
#                                                                                default_value=-1,
                                                                               num_oov_buckets=2)
# columns = tf.feature_column.embedding_column(user_item, 8)
columns = tf.feature_column.indicator_column(user_seq_item)
sequence_feature_layer = tf.keras.experimental.SequenceFeatures(columns)
sequence_input, sequence_length = sequence_feature_layer(features)
print(sequence_input, sequence_length)
sequence_length_mask = tf.sequence_mask(sequence_length)
print(sequence_length_mask)
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值