tf.feature_column使用,可用线性模型或者序列模型
features = {
'user_item': [["A","B","-1"],
["A","B","A"],
["A","B","B"],
["C","B","C"]],
}
user_item = tf.feature_column.categorical_column_with_vocabulary_list(key="user_item",
vocabulary_list=("A","B","C"),
num_oov_buckets=2)
columns = tf.feature_column.indicator_column(user_item)
inputs = tf.compat.v1.feature_column.input_layer(features, columns)
print(inputs)
user_seq_item = tf.feature_column.sequence_categorical_column_with_vocabulary_list(key="user_item",
vocabulary_list=("A","B","C"),
num_oov_buckets=2)
columns = tf.feature_column.indicator_column(user_seq_item)
sequence_feature_layer = tf.keras.experimental.SequenceFeatures(columns)
sequence_input, sequence_length = sequence_feature_layer(features)
print(sequence_input, sequence_length)
sequence_length_mask = tf.sequence_mask(sequence_length)
print(sequence_length_mask)