第二章 Projective Geometry and Transformations of 2D

这篇博客介绍了二维射影平面的基本概念,包括点的齐次坐标表示、线的表示及其交点计算,以及理想点和无穷远线。还讨论了射影变换的性质,如对偶性和共轭概念,并涉及圆的射影几何,包括圆的方程、切线和射影变换下的行为。最后提到了从图像中恢复仿射和度量属性的应用。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

2.1 Planar geometry

Entities point line conic
Algebraic vector vector symmetric matrix

2.2 The 2D projective plane

2.2.1 Points and lines

Homogeneous representation of lines
A common line is represented by equation a x + b y + c = 0 ax + by + c = 0 ax+by+c=0, thus, a line is represented by the vector ( a , b , c ) T (a, b, c)^T (a,b,c)T

The set of vectors in R 3 − ( 0 , 0 , 0 ) T \mathbb{R}^3 - (0, 0, 0)^T R3(0,0,0)T forms the projective space P 2 \mathbb{P}^2 P2.

Homogeneous representation of points
An arbitrary homogeneous vector x = ( x 1 , x 2 , x 3 ) T x = (x_1, x_2, x_3)^T x=(x1,x2,x3)T represents the point ( x 1 x 3 , x 2 x 3 ) T (\frac{x_1}{x_3}, \frac{x_2}{x_3})^T (x3x1,x3x2)T in R 2 \mathbb{R}^2 R2.

Result 2.1 The point x \mathbf{x} x lies on the line l \mathbf{l} l if and only if x T l = 0 x^Tl = 0 xTl=0.

Degrees of freedom (dof) Both point and line have 2 DoF.

Intersection of lines
Result 2.2 The intersection of two lines l \mathbf{l} l and l ′ \mathbf{l}' l is the point x = l × l ′ x = l \times l' x=l×l.

Line joining points
Result 2.4. The line through two points x \mathbf{x} x and x ′ \mathbf{x'} x is l = x × x ′ l = x \times x' l=x×x.

2.2.2 Ideal points and the line at infinity

Intersection of parallel lines.
Ideal points and the line at infinity.
The set of all ideal points can be written in ( x 1 , x 2 , 0 ) (x_1, x_2, 0) (x1

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值