Java内存模型
1、什么是java内存模型JMM
JMM 是和多线程相关的一组规范,需要各个 JVM 的实现来遵守 JMM 规范,以便于开发者可以利用这些规范,更方便地开发多线程程序。这样一来,即便同一个程序在不同的虚拟机上运行,得到的程序结果也是一致的。
2、指令重排
什么是重排序
假设我们写了一个 Java 程序,包含一系列的语句,我们会默认期望这些语句的实际运行顺序和写的代码顺序一致。但实际上,编译器、JVM 或者 CPU 都有可能出于优化等目的,对于实际指令执行的顺序进行调整,这就是重排序。
重排序的好处如图所示
可以看出,重排序后 a 的相关指令发生了变化,节省了一次 Load a 和一次 Store a。重排序通过减少执行指令,从而提高整体的运行速度,这就是重排序带来的优化和好处。
重排序的 3 种情况
下面我们来看一下重排序的 3 种情况。
(1)编译器优化
编译器(包括 JVM、JIT 编译器等)出于优化的目的,例如当前有了数据 a,把对 a 的操作放到一起效率会更高,避免读取 b 后又返回来重新读取 a 的时间开销,此时在编译的过程中会进行一定程度的重排。不过重排序并不意味着可以任意排序,它需要需要保证重排序后,不改变单线程内的语义,否则如果能任意排序的话,程序早就逻辑混乱了。
(2)CPU 重排序
CPU 同样会有优化行为,这里的优化和编译器优化类似,都是通过乱序执行的技术来提高整体的执行效率。所以即使之前编译器不发生重排,CPU 也可能进行重排,我们在开发中,一定要考虑到重排序带来的后果。
(3) 内存的“重排序”
内存系统内不存在真正的重排序,但是内存会带来看上去和重排序一样的效果,所以这里的“重排序”打了双引号。由于内存有缓存的存在,在 JMM 里表现为主存和本地内存,而主存和本地内存的内容可能不一致,所以这也会导致程序表现出乱序的行为。
3、主内存和工作内存(内存可见性本质)
JMM 有以下规定:
(1)所有的变量都存储在主内存中,同时每个线程拥有自己独立的工作内存,而工作内存中的变量的内容是主内存中该变量的拷贝;
(2)线程不能直接读 / 写主内存中的变量,但可以操作自己工作内存中的变量,然后再同步到主内存中,这样,其他线程就可以看到本次修改;
(3) 主内存是由多个线程所共享的,但线程间不共享各自的工作内存,如果线程间需要通信,则必须借助主内存中转来完成。
每个工作内存中的变量都是对主内存变量的一个拷贝,相当于是一个副本。而且图中没有一条线是可以直接连接各个工作内存的,因为工作内存之间的通信,都需要通过主内存来中转。
正是由于所有的共享变量都存在于主内存中,每个线程有自己的工作内存,其中存储的是变量的副本,所以这个副本就有可能是过期的,我们来举个例子:如果一个变量 x 被线程 A 修改了,只要还没同步到主内存中,线程 B 就看不到,所以此时线程 B 读取到的 x 值就是一个过期的值,这就导致了可见性问题。
4、happens-before原则
什么是 happens-before 关系
Happens-before 关系是用来描述和可见性相关问题的:如果第一个操作 happens-before 第二个操作(也可以描述为,第一个操作和第二个操作之间满足 happens-before 关系),那么我们就说第一个操作对于第二个操作一定是可见的,也就是第二个操作在执行时就一定能保证看见第一个操作执行的结果。
(1)单线程规则:
在一个单独的线程中,按照程序代码的顺序,先执行的操作 happen-before 后执行的操作。
(2)锁操作规则(synchronized 和 Lock 接口等)
(3)volatile 变量规则:
对一个 volatile 变量的写操作 happen-before 后面对该变量的读操作。
这就代表了如果变量被 volatile 修饰,那么每次修改之后,其他线程在读取这个变量的时候一定能读取到该变量最新的值。我们之前介绍过 volatile 关键字,知道它能保证可见性,而这正是由本条规则所规定的。
(4)线程启动规则:
Thread 对象的 start 方法 happen-before 此线程 run 方法中的每一个操作。如下图所示:
在图中的例子中,左侧区域是线程 A 启动了一个子线程 B,而右侧区域是子线程 B,那么子线程 B 在执行 run 方法里面的语句的时候,它一定能看到父线程在执行 threadB.start() 前的所有操作的结果。
(5)线程 join 规则:
我们知道 join 可以让线程之间等待,假设线程 A 通过调用 threadB.start() 启动了一个新线程 B,然后调用 threadB.join() ,那么线程 A 将一直等待到线程 B 的 run 方法结束(不考虑中断等特殊情况),然后 join 方法才返回。在 join 方法返回后,线程 A 中的所有后续操作都可以看到线程 B 的 run 方法中执行的所有操作的结果,也就是线程 B 的 run 方法里面的操作 happens-before 线程 A 的 join 之后的语句。
5、volatile作用
Java 中的一个关键字,是一种同步机制。当某个变量是共享变量,且这个变量是被 volatile 修饰的,那么在修改了这个变量的值之后,再读取该变量的值时,可以保证获取到的是修改后的最新的值,而不是过期的值。
相比于 synchronized 或者 Lock,volatile 是更轻量的,因为使用 volatile 不会发生上下文切换等开销很大的情况,不会让线程阻塞。但正是由于它的开销相对比较小,所以它的效果,也就是能力,相对也小一些。
虽然说 volatile 是用来保证线程安全的,但是它做不到像 synchronized 那样的同步保护,volatile 仅在很有限的场景中才能发挥作用,所以下面就让我们来看一下它的适用场景,我们会先给出不适合使用 volatile 的场景,再给出两种适合使用 volatile 的场景。
volatile 的适用场合
不适用:a++
首先我们就来看一下不适合使用 volatile 的场景,volatile 不适合运用于需要保证原子性的场景.
适用场合1:布尔标记位
基本变量赋值操作自身是具有原子性的(不包括long和double),volatile 同时又保证了可见性,这就足以保证线程安全了。
适用场合 2:作为触发器
作为触发器,保证其他变量的可见性。
Map configOptions;
char[] configText;
volatile boolean initialized = false;
. . .
// In thread A
configOptions = new HashMap();
configText = readConfigFile(fileName);
processConfigOptions(configText, configOptions);
initialized = true;
. . .
// In thread B
while (!initialized)
sleep();
// use configOptions
根据happens-before 关系的单线程规则,线程 A 中 configOptions 的初始化 happens-before 对 initialized 变量的写入,而线程 B 中对 initialzed 的读取 happens-before 对 configOptions 变量的使用,同时根据 happens-before 关系的 volatile 规则,线程 A 中对 initialized 的写入为 true 的操作 happens-before 线程 B 中随后对 initialized 变量的读取。
而 Happens-before 是有可传递性质的我们可以得出结论:线程 A 中对于 configOptions 的初始化 happens-before 线程 B 中 对于 configOptions 的使用。所以对于线程 B 而言,既然它已经看到了 initialized 最新的值,那么它同样就能看到包括 configOptions 在内的这些变量初始化后的状态,所以此时线程 B 使用 configOptions 是线程安全的。这种用法就是把被 volatile 修饰的变量作为触发器来使用,保证其他变量的可见性
volatile 的作用
第一层的作用是保证可见性
Happens-before 关系中对于 volatile 是这样描述的:对一个 volatile 变量的写操作 happen-before 后面对该变量的读操作。
这就代表了如果变量被 volatile 修饰,那么每次修改之后,接下来在读取这个变量的时候一定能读取到该变量最新的值。
第二层的作用就是禁止重排序 (原理其实是内存屏障感兴趣自己去摸索)
volatile 和 synchronized 的关系
相似性:volatile 可以看作是一个轻量版的 synchronized,比如一个共享变量如果自始至终只被各个线程赋值和读取,而没有其他操作的话,那么就可以用 volatile 来代替 synchronized 或者代替原子变量,足以保证线程安全。实际上,对 volatile 字段的每次读取或写入都类似于“半同步”——读取 volatile 与获取 synchronized 锁有相同的内存语义,而写入 volatile 与释放 synchronized 锁具有相同的语义。
不可代替:但是在更多的情况下,volatile 是不能代替 synchronized 的,volatile 并没有提供原子性和互斥性。
性能方面:volatile 属性的读写操作都是无锁的,正是因为无锁,所以不需要花费时间在获取锁和释放锁上,所以说它是高性能的,比 synchronized 性能更好。