Fully Convolutional Adaptation Networks for Semantic Segmentation

本文介绍了一种跨域适应的深度学习解决方案,通过构建不变性来最小化域迁移的度量,如相关距离或最大均值差异。从外观级别和表示级别两方面建立不变性,使用预训练CNN构建融合源图像高级内容和目标域低级像素信息的图像,以及通过FCN、ASPP和域判别器优化分类损失和对抗损失。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

核心思想:
build invariance across domains by minimizing the measure of domain shift such as correlation distances or maximum mean discrepancy
创新点(号称):
从两个角度考虑invariance: appearance-level 和 representation-level

1.appearence level (AAN)
AAN is to construct an image that captures high-level content in a source image and low-level pixel information of the target domain.

use a pre-trained CNN

2.representation level (RAN)
FCN + ASPP + domain discriminator
(ASPP的作用:Atrous Spatial Pyramid Pooling (ASPP) strategy is particularly devised to enlarge the field of view of filters in feature map and endow the domain discriminator with more power.)
RAN优化两种loss: classification loss to measure pixel-level semantics and adversarial loss to maximally fool the domain discriminator with the learnt source and target representations.

作者文中总结:The solution also leads to the elegant views of what kind of invariance should be built across domains for adaptation and how to model the domain invariance in a deep learning framework especially for the task of semantic segmentation, which are problems not yet fully understood in the literature.

In the context of domain adaptation, this adversarial principle is then equivalent to guiding the representation learning in both domains, making the difference between source and target representation distributions indistinguishable through the domain discriminator.

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值