tensorflow study2 自动编码器的实现

本文介绍了一种基于TensorFlow实现的加性高斯噪声自编码器(AGN),并详细展示了其在MNIST数据集上的应用过程。通过定义网络结构、训练方法及测试性能,实现了对图像的去噪重构。
import numpy as np
import sklearn.preprocessing as prep
import tensorflow as tf
In [3]:
from tensorflow.examples.tutorials.mnist import input_data
In [20]:
def xavier_init(fan_in,fan_out,constant=1):
    low = -constant*np.sqrt(6.0/(fan_in+fan_out))
    high = constant*np.sqrt(6.0/(fan_in+fan_out))
    return tf.random_uniform((fan_in,fan_out),
                             minval=low,maxval=high,
                            dtype=tf.float32)
In [30]:
class AdditiveGaussianNoiseAutoencoder(object):
    def __init__(self,n_input,n_hidden,transfer_function=tf.nn.softplus,
                optimizer = tf.train.AdamOptimizer,scale=0.1):
        self.n_input = n_input
        self.n_hidden = n_hidden
        self.transfer = transfer_function
        self.scale = tf.placeholder(tf.float32)
        self.training_scale = scale
        network_weights = self._initialize_weights()
        self.weights = network_weights
        
        self.x=tf.placeholder(tf.float32,[None,self.n_input])#x是噪声
        self.hidden =self.transfer(tf.add(tf.matmul(
                         self.x+scale*tf.random_normal((n_input,)),
                         self.weights['w1']),self.weights['b1']))
        self.reconstruction = tf.add(tf.matmul(self.hidden,
                                  self.weights['w2']),self.weights['b2'])
        
        self.cost =0.5*tf.reduce_sum(tf.pow(tf.subtract(
                           self.reconstruction,self.x),2.0))
        self.optimizer=optimizer.minimize(self.cost)
        
        init = tf.global_variables_initializer()#定义了去噪编码器的架构,并且初始化所有参数
        self.sess =tf.Session()
        self.sess.run(init)
        
    def _initialize_weights(self):
        all_weights = dict()
        all_weights['w1']=tf.Variable(xavier_init(self.n_input,
                                                 self.n_hidden))
        all_weights['b1']=tf.Variable(tf.zeros([self.n_hidden],
                                             dtype = tf.float32))
        all_weights['w2']=tf.Variable(tf.zeros([self.n_hidden,
                              self.n_input],dtype=tf.float32))#由于是编码器,所以这里输出层的个数和输入层维数是一样的
        all_weights['b2']=tf.Variable(tf.zeros([self.n_input],
                                               dtype=tf.float32))
        return all_weights
    
    def partial_fit(self,X):#执行训练过程
        cost,opt = self.sess.run((self.cost,self.optimizer),
                                feed_dict={self.x:X,self.scale:self.training_scale})
        return cost
    
    def calc_total_cost(self,X):#这个过程不执行optimizer,那么不会训练,只是用来测试cost
        return self.sess.run(self.cost,feed_dict={self.x:X,self.scale:self.training_scale})
    
    def transform(self,X):
        return self.sess.run(self.hidden,feed_dict ={self.x:X,
                                                    self.scale:self.training_scale})#这个函数用来输出hidden学习的特征
    
    def generate(self,hidden=None):
        if hidden is None:
            hidden=np.random.normal(size=self.weights['b1'])
        return self.sess.run(self.reconstruction,feed_dict={self.hidden:hidden})
    
    def reconstruction(self,X):
        return self.sess.run(self.reconstruction,feed_dict={self.x:X,self.scale:self.training_scale})
    
    def getWeights(self):#获取隐含层权重
        return self.sess.run(self.weights['w1'])
    
    def getBiases(self):
        return self.sess.run(self.weights['b1'])
In [6]:
mnist =input_data.read_data_sets('MNIST_data',one_hot=True)#读入数据

Extracting MNIST_data\train-images-idx3-ubyte.gz
Extracting MNIST_data\train-labels-idx1-ubyte.gz
Extracting MNIST_data\t10k-images-idx3-ubyte.gz
Extracting MNIST_data\t10k-labels-idx1-ubyte.gz
In [25]:
def standard_scale(X_train,X_test):
    preprocessor=prep.StandardScaler().fit(X_train)#对数据进行减均值除方差操作
    X_train=preprocessor.transform(X_train)
    X_teat=preprocessor.transform(X_test)
    return X_train,X_test

def get_random_block_from_data(data,batch_size):#定义一个随机获取block数据的函数,随机得到batch_size个数据,不放回抽样
    start_index=np.random.randint(0,len(data)-batch_size)
    return data[start_index:(start_index+batch_size)]
In [9]:
X_train,X_test=standard_scale(mnist.train.images,mnist.test.images)
In [11]:
n_samples=int(mnist.train.num_examples)
training_epochs=20
batch_size=128
display_step=1
In [31]:
#创建一个AGN自编码器实例
autoencoder=AdditiveGaussianNoiseAutoencoder(n_input=784,
                                            n_hidden=200,
                                            transfer_function=tf.nn.softplus,
                                            optimizer=tf.train.AdamOptimizer(learning_rate=0.001),
                                            scale=0.01)
In [32]:
for epoch in range(training_epochs):
    avg_cost=0.
    total_batch=int(n_samples/batch_size)
    for i in range(total_batch):
        batch_xs=get_random_block_from_data(X_train,batch_size)
        cost=autoencoder.partial_fit(batch_xs)
        avg_cost+=cost/n_samples*batch_size
        
    if epoch%display_step==0:
        print("Epoch:",'%04d'%(epoch+1),"cost=",
             "{:.9f}".format(avg_cost))

Epoch: 0001 cost= 18236.463554545
Epoch: 0002 cost= 12616.789628409
Epoch: 0003 cost= 11127.080529545
Epoch: 0004 cost= 10196.701531818
Epoch: 0005 cost= 9599.919021023
Epoch: 0006 cost= 9168.061587500
Epoch: 0007 cost= 10017.257284091
Epoch: 0008 cost= 8463.642398295
Epoch: 0009 cost= 8802.881572159
Epoch: 0010 cost= 8055.374426136
Epoch: 0011 cost= 8735.796370455
Epoch: 0012 cost= 8992.533970455
Epoch: 0013 cost= 8351.100086932
Epoch: 0014 cost= 7891.109460795
Epoch: 0015 cost= 8248.965477841
Epoch: 0016 cost= 7675.395246023
Epoch: 0017 cost= 8532.023831818
Epoch: 0018 cost= 7955.170034091
Epoch: 0019 cost= 8332.180966477
Epoch: 0020 cost= 7899.204300568
In [33]:
#最后使用训练好的模型进行性能测试
print("Total cost:"+str(autoencoder.calc_total_cost(X_test)))

Total cost:74088.1



评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值