进程
进程和线程的关系就是:一个进程可以包含一个或多个线程,但至少会有一个线程。
和多线程相比,多进程的缺点在于:
- 创建进程比创建线程开销大,尤其是在Windows系统上;
- 进程间通信比线程间通信要慢,因为线程间通信就是读写同一个变量,速度很快。
而多进程的优点在于:
- 多进程稳定性比多线程高,因为在多进程的情况下,一个进程崩溃不会影响其他进程,而在多线程的情况下,任何一个线程崩溃会直接导致整个进程崩溃。
多线程
Java语言内置了多线程支持:一个Java程序实际上是一个JVM进程,JVM进程用一个主线程来执行main()方法,在main()方法内部,我们又可以启动多个线程。此外,JVM还有负责垃圾回收的其他工作线程等。
和单线程相比,多线程编程的特点在于:多线程经常需要读写共享数据,并且需要同步。
创建新线程
//方法一:从Thread派生一个自定义类,然后覆写run()方法:
public class Main {
public static void main(String[] args) {
Thread t = new MyThread();
t.start(); // 启动新线程
}
}
class MyThread extends Thread {
@Override
public void run() {
System.out.println("start new thread!");
}
}
//方法二:创建Thread实例时,传入一个Runnable实例:
public class Main {
public static void main(String[] args) {
Thread t = new Thread(new MyRunnable());
t.start(); // 启动新线程
}
}
class MyRunnable implements Runnable {
@Override
public void run() {
System.out.println("start new thread!");
}
}
//方法三:用Java8引入的lambda语法
public class Main {
public static void main(String[] args) {
Thread t = new Thread(() -> {
System.out.println("start new thread!");
});
t.start(); // 启动新线程
}
}
public class Main {
public static void main(String[] args) {
System.out.println("main start...");
Thread t = new Thread() {
public void run() {
System.out.println("thread run...");
System.out.println("thread end.");
}
};
t.start();
System.out.println("main end...");
}
}
我们再来看线程的执行顺序:
main线程肯定是先打印main start,再打印main end;
t线程肯定是先打印thread run,再打印thread end。
但是,除了可以肯定,main start会先打印外,main end打印在thread run之前、thread end之后或者之间,都无法确定。因为从t线程开始运行以后,两个线程就开始同时运行了,并且由操作系统调度,程序本身无法确定线程的调度顺序。
Thread.sleep()可以把当前线程暂停一段时间。
Java用Thread对象表示一个线程,通过调用start()启动一个新线程;
线程的优先级
Thread.setPriority(int n) // 1~10, 默认值5
优先级高的线程被操作系统调度的优先级较高,操作系统对高优先级线程可能调度更频繁,但我们决不能通过设置优先级来确保高优先级的线程一定会先执行。
线程的状态
在Java程序中,一个线程对象只能调用一次start()方法启动新线程,并在新线程中执行run()方法。一旦run()方法执行完毕,线程就结束了。因此,Java线程的状态有以下几种:
- New:新创建的线程,尚未执行;
- Runnable:运行中的线程,正在执行run()方法的Java代码;
- Blocked:运行中的线程,因为某些操作被阻塞而挂起;
- Waiting:运行中的线程,因为某些操作在等待中;
- Timed Waiting:运行中的线程,因为执行sleep()方法正在计时等待;
- Terminated:线程已终止,因为run()方法执行完毕。
线程终止的原因有:
- 线程正常终止:run()方法执行到return语句返回;
- 线程意外终止:run()方法因为未捕获的异常导致线程终止;
- 对某个线程的Thread实例调用stop()方法强制终止(强烈不推荐使用)。
join()
- 通过对另一个线程对象调用join()方法可以等待其执行结束;
可以指定等待时间,超过等待时间线程仍然没有结束就不再等待;
对已经运行结束的线程调用join()方法会立刻返回。
join(long)的重载方法也可以指定一个等待时间,超过等待时间后就不再继续等待。
中断线程
对目标线程调用interrupt()方法可以请求中断一个线程,目标线程通过检测isInterrupted()标志获取自身是否已中断。如果目标线程处于等待状态,该线程会捕获到InterruptedException;
public static void main(String[] args) throws InterruptedException {
Thread t = new MyThread();
t.start();
Thread.sleep(1000);
t.interrupt(); // 中断t线程
t.join(); // 等待t线程结束
System.out.println("end");
}
class MyThread extends Thread {
public void run() {
Thread hello = new HelloThread();
hello.start(); // 启动hello线程
try {
hello.join(); // 等待hello线程结束
} catch (InterruptedException e) {
System.out.println("interrupted!");
}
hello.interrupt();
}
}
class HelloThread extends Thread {
public void run() {
int n = 0;
while (!isInterrupted()) {
n++;
System.out.println(n + " hello!");
try {
Thread.sleep(100);
} catch (InterruptedException e) {
break;
}
}
}
}
会用一个running标志位来标识线程是否应该继续运行,在外部线程中,通过把HelloThread.running置为false,就可以让线程结束:
public class Main {
public static void main(String[] args) throws InterruptedException {
HelloThread t = new HelloThread();
t.start();
Thread.sleep(1);
t.running = false; // 标志位置为false
}
}
class HelloThread extends Thread {
public volatile boolean running = true;
public void run() {
int n = 0;
while (running) {
n ++;
System.out.println(n + " hello!");
}
System.out.println("end!");
}
}
通过标志位判断需要正确使用volatile关键字;
volatile关键字解决了共享变量在线程间的可见性问题。
守护线程
只是在调用start()方法前,调用setDaemon(true)把该线程标记为守护线程
Thread t = new MyThread();
t.setDaemon(true);
t.start();
线程同步
public class Main {
public static void main(String[] args) throws Exception {
var add = new AddThread();
var dec = new DecThread();
add.start();
dec.start();
add.join();
dec.join();
System.out.println(Counter.count);
}
}
class Counter {
public static final Object lock = new Object();
public static int count = 0;
}
class AddThread extends Thread {
public void run() {
for (int i=0; i<10000; i++) {
synchronized(Counter.lock) {// 获取锁
Counter.count += 1;
}// 释放锁
}
}
}
class DecThread extends Thread {
public void run() {
for (int i=0; i<10000; i++) {
synchronized(Counter.lock) {
Counter.count -= 1;
}
}
}
}
我们来概括一下如何使用synchronized:
- 找出修改共享变量的线程代码块;
- 选择一个共享实例作为锁;
- 使用synchronized(lockObject) { … }。
- 注意加锁对象必须是同一个实例;
JVM规范定义了几种原子操作:
- 基本类型(long和double除外)赋值,例如:int n = m;
- 引用类型赋值,例如:List list = anotherList。
long和double是64位数据,JVM没有明确规定64位赋值操作是不是一个原子操作,不过在x64平台的JVM是把long和double的赋值作为原子操作实现的。
单条原子操作的语句不需要同步。
同步方法
public class HelloWorld {
public static void main(String[] args) throws Exception {
var c1 = new Counter();
var c2 = new Counter();
// 对c1进行操作的线程:
new Thread(() -> {
c1.add(1);
System.out.println(c1.get());
}).start();
new Thread(() -> {
c1.dec(2);
System.out.println(c1.get());
}).start();
// 对c2进行操作的线程:
new Thread(() -> {
c2.add(8);
System.out.println(c2.get());
}).start();
new Thread(() -> {
c2.dec(4);
System.out.println(c2.get());
}).start();
}
}
class Counter {
private int count = 0;
public void add(int n) {
synchronized(this) {
count += n;
}
}
public void dec(int n) {
synchronized(this) {
count -= n;
}
}
public int get() {
return count;
}
}
,用synchronized修饰的方法就是同步方法,它表示整个方法都必须用this实例加锁。
死锁
Java的线程锁是可重入的锁。
JVM允许同一个线程重复获取同一个锁,这种能被同一个线程反复获取的锁,就叫做可重入锁。
public void add(int m) {
synchronized(lockA) { // 获得lockA的锁
this.value += m;
synchronized(lockB) { // 获得lockB的锁
this.another += m;
} // 释放lockB的锁
} // 释放lockA的锁
}
public void dec(int m) {
synchronized(lockB) { // 获得lockB的锁
this.another -= m;
synchronized(lockA) { // 获得lockA的锁
this.value -= m;
} // 释放lockA的锁
} // 释放lockB的锁
}
在获取多个锁的时候,不同线程获取多个不同对象的锁可能导致死锁。对于上述代码,线程1和线程2如果分别执行add()和dec()方法时:
线程1:进入add(),获得lockA;
线程2:进入dec(),获得lockB。
随后:
线程1:准备获得lockB,失败,等待中;
线程2:准备获得lockA,失败,等待中。
此时,两个线程各自持有不同的锁,然后各自试图获取对方手里的锁,造成了双方无限等待下去,这就是死锁。
避免死锁的方法是多线程获取锁的顺序要一致。
使用wait和notify
public class Main {
public static void main(String[] args) throws InterruptedException {
var q = new TaskQueue();
var ts = new ArrayList<Thread>();
for (int i=0; i<5; i++) {
var t = new Thread() {
public void run() {
// 执行task:
while (true) {
try {
String s = q.getTask();
System.out.println("execute task: " + s);
} catch (InterruptedException e) {
return;
}
}
}
};
t.start();
ts.add(t);
}
var add = new Thread(() -> {
for (int i=0; i<10; i++) {
// 放入task:
String s = "t-" + Math.random();
System.out.println("add task: " + s);
q.addTask(s);
try { Thread.sleep(100); } catch(InterruptedException e) {}
}
});
add.start();
add.join();
Thread.sleep(100);
for (var t : ts) {
t.interrupt();
}
}
}
class TaskQueue {
Queue<String> queue = new LinkedList<>();
public synchronized void addTask(String s) {
this.queue.add(s);
this.notifyAll(); // 唤醒在this锁等待的线程
}
public synchronized String getTask() throws InterruptedException {
while (queue.isEmpty()) {
// 释放this锁:
this.wait();
// 重新获取this锁
}
return queue.remove();
}
}
wait和notify用于多线程协调运行:
- 在synchronized内部可以调用wait()使线程进入等待状态;
- 必须在已获得的锁对象上调用wait()方法;
- 在synchronized内部可以调用notify()或notifyAll()唤醒其他等待线程;
- 必须在已获得的锁对象上调用notify()或notifyAll()方法;
- 已唤醒的线程还需要重新获得锁后才能继续执行
使用ReentrantLock
public class Counter {
private final Lock lock = new ReentrantLock();
private int count;
public void add(int n) {
lock.lock();
try {
count += n;
} finally {
lock.unlock();
}
}
}
ReentrantLock可以替代synchronized进行同步;
ReentrantLock获取锁更安全;
必须先获取到锁,再进入try {…}代码块,最后使用finally保证释放锁;
可以使用tryLock()尝试获取锁。
使用Condition
class TaskQueue {
private final Lock lock = new ReentrantLock();
private final Condition condition = lock.newCondition();
private Queue<String> queue = new LinkedList<>();
public void addTask(String s) {
lock.lock();
try {
queue.add(s);
condition.signalAll();
} finally {
lock.unlock();
}
}
public String getTask() {
lock.lock();
try {
while (queue.isEmpty()) {
condition.await();
}
return queue.remove();
} finally {
lock.unlock();
}
}
}
Condition提供的await()、signal()、signalAll()原理和synchronized锁对象的wait()、notify()、notifyAll()是一致的,并且其行为也是一样.
await()可以在等待指定时间后,如果还没有被其他线程通过signal()或signalAll()唤醒,可以自己醒来:
if (condition.await(1, TimeUnit.SECOND)) {
// 被其他线程唤醒
} else {
// 指定时间内没有被其他线程唤醒
}
使用ReadWriteLock
public class Counter {
private final ReadWriteLock rwlock = new ReentrantReadWriteLock();
private final Lock rlock = rwlock.readLock();
private final Lock wlock = rwlock.writeLock();
private int[] counts = new int[10];
public void inc(int index) {
wlock.lock(); // 加写锁
try {
counts[index] += 1;
} finally {
wlock.unlock(); // 释放写锁
}
}
public int[] get() {
rlock.lock(); // 加读锁
try {
return Arrays.copyOf(counts, counts.length);
} finally {
rlock.unlock(); // 释放读锁
}
}
}
使用ReadWriteLock可以提高读取效率:
- ReadWriteLock只允许一个线程写入;
- ReadWriteLock允许多个线程在没有写入时同时读取;
- ReadWriteLock适合读多写少的场景。