【deep learning with pytorch】运用pytorch训练模型
之前的博客已经介绍了如何定义与加载数据集、定义并使用网络。这篇博客将以一个完整的训练分类器为例,介绍如何训练一个神经网络。
总结写一个架构应该有的流程是:
1、构建神经网络架构
2、搭建数据集架构
3、定义loss,优化器
4、将数据输入,训练
5、用测试数据集做测试
1、构建神经网络
import torch.nn as nn
import torch.nn.functional as F
class Net(nn.Module):
def __init__(self):
super(Net, self).__init__()
self.conv1 = nn.Conv2d(3,6,5)
self.pool = nn.MaxPool2d(2,2)
self.conv2 = nn.Conv2d(6,16,5)
self.fc1 = nn.Linear(16*5*5,128)
self.fc2 = nn.Linear(120,84)
self.fc3 = nn.Linear(84,10)
def forward(self,x):
x = self.pool(F.relu(self.conv1(x)))
x = self.pool(F.relu(self.conv2(x)))
x = x.view(-1,16*5*5)
x = F.relu(self.fc1(x))
x = F.relu(self.fc2(x))
x = self.fc3(x)
return x
net = Net()
2、构建数据集
这里数据集是直接采用torchvision中自带的。
import torch
import torchvision
import trochvision.transforms as transforms
transform = transforms.Compose([transforms.ToTensor(),transforms.Normalize((0.5,0.5,0.5),(0.5,0.5,0.5))])
trainset = torchvision.datasets.CIFAR10(root = './data',train = True,download = True, transform = transform)
trainloader = torch.utils.Dataloder(trainset,batch_size = 4,shuffle = True, num_workers = 2)
testset = torchvision.datasets.CIFAR10(root = './data',train = False,download = True, transform = transform)
testloder = torch.utils.Dataloder(testset,batch_size =4,shuffle = False, num_workers = 2)
class = ('plane', 'car', 'bird', 'cat',
'deer', 'dog', 'frog', 'horse', 'ship', 'truck')
定义Loss,优化器
import torch.optim as optim
Loss = nn.CrossEntropyLoss()
optimizer = optim.SGD(net.parameters(),lr = 0.001,momentum = 0.9)
训练网络
for epoch in range(2):#迭代整个数据集2次
running_loss = 0.0
for i ,data in enumerate(trainloader,0):#这里data是形式是[inputs,labels]
inputs,labels = data
optimizer.zero_grad()
outputs = net(inputs)
loss = Loss(output,labels)
loss.backward()
optimizer.step()
running_loss +=loss.item()
if i % 2000 == 1999:#打印数据
print('[%d, %5d] loss:%.3f'%(epoch+1,i+1,running_loss/2000))
running_loss =0.0
print('Finish')
#存储训练结果:
path = './cifar_net/pth'
torch.save(net.state_dict(),path)
关于存储模型推荐两种存储方式:
1、存储:torch.save(the_model.state_dict(),path)
加载:the_model = model_class(*args,**kwargs)
the_model.load_state_dict(torch.load(path))
2、存储:torch.save(the_model.state_dict(),path)
加载:the_model= torch.load(path)
测试训练结果:
net = Net()
#加载模型
net.load_state_dict(torch.load(path))
with torch.no_grad():
for data in testloader:
images, labels = data
outputs = net(images)
_,predicted = torch.max(outputs.data,1)
total +=labels.size(0)
correct +=(predicted ==labels).sum().item()
print('Accuracy of the network on the 10000 test images: %d %%' % (
100 * correct / total))
以上就完成了一个网络的训练与测试过程
在GPU上训练
一般情况下,网络的训练,cpu是没有办法处理的,故而需要在gpu上训练。类似于将数据转移到gpu上,可以将整个网络转移到gpu上。
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")#检测是否在cuda上
net.to(device)
#同样需要将数据转移到cuda 上面
inputs,labels = data[0].to(device), data[1].to(device)