python自带数据的模型合集

鸢尾花----聚类

Python鸢尾花数据集通常用于分类问题,
这些模型都可以通过Python中的Scikit-learn库进行实现。同时,也可以对这些模型进行参数调优以提高模型的准确性。
Logistic Regression(逻辑回归):
逻辑回归是一种二分类模型,它可以用于预测某种物品是否属于某个类别。例如,可以使用逻辑回归来预测鸢尾花是否为Setosa。
Decision Tree(决策树):
决策树是一种基于树结构的分类模型,它可以用于预测某种物品属于哪个类别。例如,可以使用决策树来预测鸢尾花的品种。
Random Forest(随机森林)
随机森林是一种基于决策树的集成学习模型,它可以用于预测某种物品属于哪个类别。例如,可以使用随机森林来预测鸢尾花的品种。
K-Nearest Neighbors(K近邻):
K近邻是一种基于距离的分类模型,它可以用于预测某种物品属于哪个类别。例如,可以使用K近邻来预测鸢尾花的品种。
Support Vector Machine(支持向量机):
支持向量机是一种基于分隔超平面的分类模型,它可以用于预测某种物品属于哪个类别。例如,可以使用支持向量机来预测鸢尾花的品种。
Naive Bayes(朴素贝叶斯):
朴素贝叶斯是一种基于贝叶斯定理的分类模型,它可以用于预测某种物品属于哪个类别。例如,可以使用朴素贝叶斯来预测品种。

写一个总览的各个模型

首先,需要加载鸢尾花数据集:


from sklearn.datasets import load_iris
iris = load_iris()
X = iris.data
y = iris.target

接着,将数据集拆分为训练集和测试集:


from sklearn.model_selection import train_test_split
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)

然后,我们可以使用以下代码来实现这些模型:



Logistic Regression(逻辑回归):


from sklearn.linear_model import LogisticRegression
classifier = LogisticRegression()
classifier.fit(X_train, y_train)
accuracy = classifier.score(X_test, y_test)
print("Logistic Regression Accuracy:", accuracy)

输出:


Logistic Regression Accuracy: 1.0


Decision Tree(决策树):


from sklearn.tree import DecisionTreeClassifier
classifier = DecisionTreeClassifier()
classifier.fit(X_train, y_train)
accuracy = classifier.score(X_test, y_test)
print("Decision Tree Accuracy:", accuracy)

输出:


Decision Tree Accuracy: 1.0


Random Forest(随机森林):


from sklearn.ensemble import RandomForestClassifier
classifier = RandomForestClassifier()
classifier.fit(X_train, y_train)
accuracy = classifier.score(X_test, y_test)
print("Random Forest Accuracy:", accuracy)

输出:


Random Fore
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值