PySpark大数据处理详细教程

本文详细介绍了如何在PySpark中使用DataFrame进行基础和高级操作,包括数据加载、查看、选择、过滤、转换、聚合、排序、合并,以及高级功能如数据分区、特征工程、文本处理和SQL查询。同时涵盖性能调优和与其他数据源集成等内容。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

在这里插入图片描述
欢迎各位数据爱好者!今天,我很高兴与您分享我的最新博客,专注于探索 PySpark DataFrame 的强大功能。无论您是刚入门的数据分析师,还是寻求深入了解大数据技术的专业人士,这里都有丰富的知识和实用的技巧等着您。让我们一起潜入 PySpark 的世界,解锁数据处理和分析的无限可能!

类别 内容导航
机器学习 机器学习算法应用场景与评价指标
机器学习算法—分类
机器学习算法—回归
机器学习算法—聚类
机器学习算法—异常检测
机器学习算法—时间序列
数据可视化 数据可视化—折线图
数据可视化—箱线图
数据可视化—柱状图
数据可视化—饼图、环形图、雷达图
统计学检验 箱线图筛选异常值
3 Sigma原则筛选离群值
Python统计学检验
大数据 PySpark大数据处理详细教程
使用教程 CentOS服务器搭建Miniconda环境
Linux服务器配置免密SSH
大数据集群缓存清理
面试题整理 面试题—机器学习算法
面试题—推荐系统

基础操作

基础操作涵盖了数据的创建、加载、查看、选择、过滤、转换、聚合、排序、合并和导出等基本操作。

1.数据创建和加载

# 读取 CSV 文件
df = spark.read.csv("path/to/file.csv", header=True, inferSchema=True)

# 读取 HIVE 表
hive_sql = f"select * from {
     DATABASE}.{
     TABLE_NAME} {
     CONDITION}"
df = spark.sql(hive_sql)

# 读取 Parquet 文件
parquet_file = "path/to/parquet/file"
df = spark.read.parquet(parquet_file)

2.数据查看和检查

df.show(2,truncate=False)
df.printSchema()

3.查看分位数


                
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值