欢迎各位数据爱好者!今天,我很高兴与您分享我的最新博客,专注于探索 PySpark DataFrame 的强大功能。无论您是刚入门的数据分析师,还是寻求深入了解大数据技术的专业人士,这里都有丰富的知识和实用的技巧等着您。让我们一起潜入 PySpark 的世界,解锁数据处理和分析的无限可能!
类别 | 内容导航 |
---|---|
机器学习 | 机器学习算法应用场景与评价指标 |
机器学习算法—分类 | |
机器学习算法—回归 | |
机器学习算法—聚类 | |
机器学习算法—异常检测 | |
机器学习算法—时间序列 | |
数据可视化 | 数据可视化—折线图 |
数据可视化—箱线图 | |
数据可视化—柱状图 | |
数据可视化—饼图、环形图、雷达图 | |
统计学检验 | 箱线图筛选异常值 |
3 Sigma原则筛选离群值 | |
Python统计学检验 | |
大数据 | PySpark大数据处理详细教程 |
使用教程 | CentOS服务器搭建Miniconda环境 |
Linux服务器配置免密SSH | |
大数据集群缓存清理 | |
面试题整理 | 面试题—机器学习算法 |
面试题—推荐系统 |
基础操作
基础操作涵盖了数据的创建、加载、查看、选择、过滤、转换、聚合、排序、合并和导出等基本操作。
1.数据创建和加载
# 读取 CSV 文件
df = spark.read.csv("path/to/file.csv", header=True, inferSchema=True)
# 读取 HIVE 表
hive_sql = f"select * from {
DATABASE}.{
TABLE_NAME} {
CONDITION}"
df = spark.sql(hive_sql)
# 读取 Parquet 文件
parquet_file = "path/to/parquet/file"
df = spark.read.parquet(parquet_file)
2.数据查看和检查
df.show(2,truncate=False)
df.printSchema()