通俗易懂--逻辑回归算法讲解(算法+案例)

本文详细介绍了逻辑回归的基本概念,包括其与线性回归的关系、Sigmoid函数、损失函数、多分类问题的解决策略以及在实际中的应用案例。通过Python代码实现展示了逻辑回归的工作流程,适合机器学习初学者深入理解。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >


寻觅互联网,少有机器学习通俗易懂之算法讲解、案例等,项目立于这一问题之上,整理一份基本算法讲解+案例于文档,供大家学习之。通俗易懂之文章亦不可以面概全,但凡有不正确或争议之处,望告知,自当不吝赐教!

GitHub地址(代码加数据)

1.逻辑回归(Logistic Regression)

1.1逻辑回归与线性回归的关系

逻辑回归是用来做分类算法的,大家都熟悉线性回归,一般形式是Y=aX+b,y的取值范围是[-∞, +∞],有这么多取值,怎么进行分类呢?不用担心,伟大的数学家已经为我们找到了一个方法。

首先我们先来看一个函数,这个函数叫做Sigmoid函数:

image

函数中t无论取什么值,其结果都在[0,-1]的区间内,回想一下,一个分类问题就有两种答案,一种是“是”,一种是“否”,那0对应着“否”,1对应着“是”,那又有人问了,你这不是[0,1]的区间吗,怎么会只有0和1呢?这个问题问得好,我们假设分类的阈值是0.5,那么超过0.5的归为1分类,低于0.5的归为0分类,阈值是可以自己设定的。

好了,接下来我们把aX+b带入t中就得到了我们的逻辑回归的一般模型方程:

image

结果P也可以理解为概率,换句话说概率大于0.5的属于1分类,概率小于0.5的属于

评论 7
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值