Introduction to Linear Algebra, Chapter-1, Introduction to Vectors, Key Notes

Introduction to Linear Algebra, Chapter-1, Introductionto Vectors, Key Notes

本人在阅读MIT数学教授Gilbert Strang所著线性代数教材"Introduction to Linear Algebra(Fifth Edition)"过程中敲下的笔记

我是用的教学视频是BV1uK4y187ep

课后习题答案即其相关资料可参照math.mit.edu/linearalgebra

1.1 Vectors and Linear Combinations

Column Vector(列向量)
v → = [ v 1 v 2 ] \overrightarrow{v} = \begin{bmatrix} v_1 \\ v_2 \end{bmatrix} v =[v1v2]

Vector Addition(向量加法)
v → = [ v 1 v 2 ] , w → = [ w 1 w 2 ] , v → + w → = [ v 1 + w 1 v 2 + w 2 ] \overrightarrow{v} = \begin{bmatrix} v_1 \\ v_2 \end{bmatrix} \quad,\quad \overrightarrow{w} = \begin{bmatrix} w_1 \\ w_2 \end{bmatrix} \quad,\quad \overrightarrow{v} + \overrightarrow{w} = \begin{bmatrix} v_1 + w_1 \\ v_2 + w_2 \end{bmatrix} v =[v1v2],w =[w1w2],v +w =[v1+w1v2+w2]

Scalar Multiplication(标量乘法)
c v → = [ c v 1 c v 2 ] c \overrightarrow{v} = \begin{bmatrix} c v_1 \\ c v_2 \end{bmatrix} cv =[cv1cv2]

Linear Combination(线性组合)
c v → + d w → = [ c v 1 + d w 1 c v 2 + d w 2 ] c \overrightarrow{v} + d \overrightarrow{w} = \begin{bmatrix} c v_1 + d w_1 \\ c v_2 + d w_2 \end{bmatrix} cv +dw =[cv1+dw1cv2+dw2]

1.2 Length and Dot Products

Dot Product/Inner Product(向量的点积/内积)
v → ⋅ w → = v 1 w 1 + v 2 w 2 \overrightarrow{v} \cdot \overrightarrow{w} = v_1w_1 + v_2w_2 v w =v1w1+v2w2
当两个向量的点积为0时,这两个向量相互垂直(perpendicular)

DEFINITION: Length of Vecter ∣ ∣ v → ∣ ∣ ||\overrightarrow{v}|| v if the squre root of v → ⋅ v → \overrightarrow{v} \cdot \overrightarrow{v} v v
定义:一个向量的模(长度)是它自己和自己的点积的平方根。

l e n g t h = ∣ ∣ v → ∣ ∣ = v → ⋅ v → = ( v 1 2 + v 2 2 + ⋯ + v n 2 ) 1 / 2 \bold{length} = ||\overrightarrow{v}|| = \sqrt{\overrightarrow{v} \cdot \overrightarrow{v}} = (v_1^2 + v_2^2 + \cdots + v_n^2)^{1/2} length=v =

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值