Introduction to Linear Algebra, Chapter-1, Introductionto Vectors, Key Notes
本人在阅读MIT数学教授Gilbert Strang所著线性代数教材"Introduction to Linear Algebra(Fifth Edition)"过程中敲下的笔记
我是用的教学视频是BV1uK4y187ep
课后习题答案即其相关资料可参照math.mit.edu/linearalgebra
1.1 Vectors and Linear Combinations
Column Vector(列向量)
v → = [ v 1 v 2 ] \overrightarrow{v} = \begin{bmatrix} v_1 \\ v_2 \end{bmatrix} v=[v1v2]
Vector Addition(向量加法)
v → = [ v 1 v 2 ] , w → = [ w 1 w 2 ] , v → + w → = [ v 1 + w 1 v 2 + w 2 ] \overrightarrow{v} = \begin{bmatrix} v_1 \\ v_2 \end{bmatrix} \quad,\quad \overrightarrow{w} = \begin{bmatrix} w_1 \\ w_2 \end{bmatrix} \quad,\quad \overrightarrow{v} + \overrightarrow{w} = \begin{bmatrix} v_1 + w_1 \\ v_2 + w_2 \end{bmatrix} v=[v1v2],w=[w1w2],v+w=[v1+w1v2+w2]
Scalar Multiplication(标量乘法)
c v → = [ c v 1 c v 2 ] c \overrightarrow{v} = \begin{bmatrix} c v_1 \\ c v_2 \end{bmatrix} cv=[cv1cv2]
Linear Combination(线性组合)
c v → + d w → = [ c v 1 + d w 1 c v 2 + d w 2 ] c \overrightarrow{v} + d \overrightarrow{w} = \begin{bmatrix} c v_1 + d w_1 \\ c v_2 + d w_2 \end{bmatrix} cv+dw=[cv1+dw1cv2+dw2]
1.2 Length and Dot Products
Dot Product/Inner Product(向量的点积/内积)
v → ⋅ w → = v 1 w 1 + v 2 w 2 \overrightarrow{v} \cdot \overrightarrow{w} = v_1w_1 + v_2w_2 v⋅w=v1w1+v2w2
当两个向量的点积为0时,这两个向量相互垂直(perpendicular)
DEFINITION: Length of Vecter ∣ ∣ v → ∣ ∣ ||\overrightarrow{v}|| ∣∣v∣∣ if the squre root of v → ⋅ v → \overrightarrow{v} \cdot \overrightarrow{v} v⋅v
定义:一个向量的模(长度)是它自己和自己的点积的平方根。
l e n g t h = ∣ ∣ v → ∣ ∣ = v → ⋅ v → = ( v 1 2 + v 2 2 + ⋯ + v n 2 ) 1 / 2 \bold{length} = ||\overrightarrow{v}|| = \sqrt{\overrightarrow{v} \cdot \overrightarrow{v}} = (v_1^2 + v_2^2 + \cdots + v_n^2)^{1/2} length=∣∣v∣∣=