tensorflow2.0 DenseNet121 训练 cifar100

from tensorflow.keras import layers, regularizers, Sequential, optimizers
import tensorflow as tf
import numpy as np

def regularized_padded_conv2d(*args, **kwargs):
    ''' 带标准化的卷积 '''

    return layers.Conv2D(
        *args, **kwargs,
        padding='same',
        kernel_regularizer=regularizers.l2(5e-5),
        bias_regularizer=regularizers.l2(5e-5),
        kernel_initializer='glorot_normal'
    )

def load_cifar100_with_DataAugmentation():
    (train_x, train_y), (test_x, test_y) = tf.keras.datasets.cifar100.load_data()
    train_x = np.array(tf.reshape(train_x, shape=(50000, 32, 32, 3)), dtype=np.float) / 255.0
    train_y = tf.keras.utils.to_categorical(train_y)

    test_x = np.array(tf.reshape(test_x, shape=(10000, 32, 32, 3)), dtype=np.float) / 255.0
    test_y = tf.keras.utils.to_categorical(test_y)

    train_noise = tf.random.normal(shape=train_x.shape, mean=0.0, stddev=0.05)
    train_x = tf.add(train_x, train_noise)

    flip_1 = tf.image.flip_up_down(train_x)
    flip_2 = tf.image.flip_left_right(train_x)
    flip_3 = tf.image.random_flip_up_down(train_x)
    flip_4 = tf.image.random_flip_left_right
评论 6
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值