# encoding = utf-8
import tensorflow as tf
from tensorflow import keras
from sklearn import neighbors, datasets
from sklearn.model_selection import train_test_split
(X_train, y_train), (X_test, y_test) = keras.datasets.fashion_mnist.load_data()
X_train = X_train.reshape(X_train.shape[0], -1)
X_test = X_test.reshape(X_test.shape[0], -1)
assert X_train.shape == (60000, 784) #checks if it's been reshaped - flattended here.Execution stops if not true
assert X_test.shape == (10000, 784)
X_train.dtype
#X_train[1]
#y_train[1:100]
train_df = pd.DataFrame(X_train)
train_df['label'] = pd.DataFrame(y_train)
test_df = pd.DataFrame(X_test)
test_df['label'] = pd.DataFrame(y_test)
for i in range(784):
train_df[i] = train_df[i].apply(lambda x:x/255)
test_df[i] = test_df[i].apply(lambda x:x/255)
from sklearn.svm import SVC
model = SVC(kernel='linear')
model.fit(train_df.drop('label',1), train_df[['label']])
test_predict = model.predict(test_df.drop('label', 1))
from sklearn.metrics import classification_report
print(classification_report(y_test, test_predict))
precision recall f1-score support
0 0.75 0.81 0.78 1000
1 0.97 0.96 0.97 1000
2 0.74 0.77 0.75 1000
3 0.85 0.84 0.85 1000
4 0.76 0.77 0.77 1000
5 0.93 0.94 0.93 1000
6 0.63 0.56 0.59 1000
7 0.92 0.93 0.93 1000
8 0.95 0.93 0.94 1000
9 0.95 0.94 0.95 1000
accuracy 0.85 10000
macro avg 0.85 0.85 0.85 10000
weighted avg 0.85 0.85 0.85 10000
from sklearn.metrics import accuracy_score
print("accuracy:", accuracy_score(y_test, test_predict))
accuracy: 0.8464
class FashionMnistLoader():
def __init__(self):
mnist = tf.keras.datasets.mnist
(self.train_data, self.train_label), (self.test_data, self.test_label) = keras.datasets.fashion_mnist.load_data()
self.train_data = np.expand_dims(
self.train_data.astype(
np.float32) / 255.0,
axis=-1) # [60000, 28, 28, 1]
self.test_data = np.expand_dims(
self.test_data.astype(np.float32) / 255.0,axis=-1) # [10000, 28, 28, 1]
self.train_label = self.train_label.astype(np.int32) # [60000]
self.test_label = self.test_label.astype(np.int32) # [10000]
self.num_train_data, self.num_test_data = self.train_data.shape[0], self.test_data.shape[0]
def get_batch(self, batch_size):
index = np.random.randint(0, np.shape(self.train_data)[0], batch_size)
return self.train_data[index, :], self.train_label[index]
class MLP(tf.keras.Model):
def __init__(self):
super().__init__()
self.flatten = tf.keras.layers.Flatten()
self.dense1 = tf.keras.layers.Dense(units=100, activation=tf.nn.relu)
self.dense2 = tf.keras.layers.Dense(units=10)
def call(self, inputs): # [batch_size, 28, 28, 1]
x = self.flatten(inputs) # [batch_size, 784]
x = self.dense1(x) # [batch_size, 100]
x = self.dense2(x) # [batch_size, 10]
output = tf.nn.softmax(x)
return output
import numpy as np
num_epochs = 5
batch_size = 50
learning_rate = 0.001
model = MLP()
data_loader = FashionMnistLoader()
optimizer = tf.keras.optimizers.Adam(learning_rate=learning_rate)
num_batches = int(data_loader.num_train_data // batch_size * num_epochs)
for batch_index in range(num_batches):
X, y = data_loader.get_batch(batch_size)
with tf.GradientTape() as tape:
y_pred = model(X)
loss = tf.keras.losses.sparse_categorical_crossentropy(
y_true=y, y_pred=y_pred)
loss = tf.reduce_mean(loss)
print("batch %d: loss %f" % (batch_index, loss.numpy()))
grads = tape.gradient(loss, model.variables)
optimizer.apply_gradients(grads_and_vars=zip(grads, model.variables))
sparse_categorical_accuracy = tf.keras.metrics.SparseCategoricalAccuracy()
num_batches = int(data_loader.num_test_data // batch_size)
for batch_index in range(num_batches):
start_index, end_index = batch_index * \
batch_size, (batch_index + 1) * batch_size
y_pred = model.predict(data_loader.test_data[start_index: end_index])
sparse_categorical_accuracy.update_state(
y_true=data_loader.test_label[start_index: end_index], y_pred=y_pred)
print("test accuracy: %f" % sparse_categorical_accuracy.result())
batch 5999: loss 0.326429
test accuracy: 0.871800