1.
#ifndef QUEUE_H_
#define QUEUE_H_
class Cow
{
private:
char name[20];
char *hobby;
double weight;
public:
Cow();
Cow(const char *num, const char *ho, double wt);
Cow(const Cow & c);
~Cow();
Cow & operator=(const Cow & c);
void ShowCow() const;
};
#endif
#include"queue.h"
#include<iostream>
#include<cstring>
using namespace std;
Cow::Cow()
{
name[0] = '\0';
hobby = new char[1];
hobby[0] = '\0';
weight = 0;
}
Cow::Cow(const char *num, const char *ho, double wt)
{
strcpy_s(name, num);
int len;
len = strlen(ho);
hobby = new char[len + 1];
strcpy_s(hobby, len+1,ho);
weight = wt;
}
Cow::Cow(const Cow & c)
{
strcpy_s(name, c.name);
int len;
len = strlen(c.hobby);
hobby = new char[len + 1];
strcpy_s(hobby,len+1, c.hobby);
weight = c.weight;
}
Cow::~Cow()
{
delete[] hobby;
}
Cow & Cow::operator=(const Cow & c)
{
int len;
if (this == &c)
return *this;
delete[] hobby;
weight = c.weight;
len = strlen(c.hobby);
hobby = new char[len + 1];
strcpy_s(hobby,len+1,c.hobby);
strcpy_s(name, c.name);
return *this;
}
void Cow::ShowCow() const
{
cout << "Name:" << name << endl;
cout << "Hobby:" << hobby << endl;
cout << "Weight:" << weight << endl;
cout << endl;
}
#include<iostream>
#include<cstring>
#include<string>
#include"queue.h"
using namespace std;
int main()
{
Cow a;
a.ShowCow();
Cow b("huangfu", "sleep", 100);
b.ShowCow();
Cow c("shuyun", "run", 200);
c.ShowCow();
a = c;
a.ShowCow();
system("PAUSE");
return 0;
}
2.
#ifndef QUEUE_H_
#define QUEUE_H_
#include <iostream>
using std::ostream;
using std::istream;
class String
{
private:
char * str; // pointer to string
int len; // length of string
static int num_strings; // number of objects
static const int CINLIM = 80; // cin input limit
public:
// constructors and other methods
String(const char * s); // constructor
String(); // default constructor
String(const String &); // copy constructor
~String(); // destructor
int length() const { return len; }
//新载函数
void stringlow();
void stringup();
int has(char c);
friend String operator+(const String &st1, const String &st2);
// overloaded operator methods
String & operator=(const String &);
String & operator=(const char *);
char & operator[](int i);
const char & operator[](int i) const;
// overloaded operator friends
friend bool operator<(const String &st, const String &st2);
friend bool operator>(const String &st1, const String &st2);
friend bool operator==(const String &st, const String &st2);
friend ostream & operator<<(ostream & os, const String & st);
friend istream & operator >> (istream & is, String & st);
// static function
static int HowMany();
};
#endif
#include"queue.h"
#include<cctype>
#include<cstring>
using std::cin;
using std::cout;
// initializing static class member
int String::num_strings = 0; //初始化应该在方法文件中,不在类声明中,不需使用static
// static method
int String::HowMany() //静态成员函数
{
return num_strings;
}
// class methods
String::String(const char * s) // construct String from C string
{
len = std::strlen(s); // set size
str = new char[len + 1]; // allot storage
strcpy_s(str,len+1, s); // initialize pointer
num_strings++; // set object count
}
String::String() // default constructor
{
len = 4;
str = new char[1];
str[0] = '\0'; // default string
num_strings++;
}
String::String(const String & st)
{
num_strings++; // handle static member update
len = st.len; // same length
str = new char[len + 1]; // allot space
strcpy_s(str, len+1,st.str); // copy string to new location
}
String::~String() // necessary destructor
{
--num_strings; // required
delete[] str; // required
}
// overloaded operator methods
// assign a String to a String
String & String::operator=(const String & st)
{
if (this == &st)
return *this;
delete[] str;
len = st.len;
str = new char[len + 1];
strcpy_s(str,len+1, st.str);
return *this;
}
// assign a C string to a String
String & String::operator=(const char * s)
{
delete[] str;
len = std::strlen(s);
str = new char[len + 1];
strcpy_s(str,len+1, s);
return *this;
}
// read-write char access for non-const String
char & String::operator[](int i)
{
return str[i];
}
// read-only char access for const String
const char & String::operator[](int i) const
{
return str[i];
}
// overloaded operator friends
bool operator<(const String &st1, const String &st2)
{
return (std::strcmp(st1.str, st2.str) < 0);
}
bool operator>(const String &st1, const String &st2)
{
return st2 < st1;
}
bool operator==(const String &st1, const String &st2)
{
return (std::strcmp(st1.str, st2.str) == 0);
}
// simple String output
ostream & operator<<(ostream & os, const String & st)
{
os << st.str;
return os;
}
// quick and dirty String input
istream & operator >> (istream & is, String & st)
{
char temp[String::CINLIM];
is.get(temp, String::CINLIM);
if (is)
st = temp;
while (is && is.get() != '\n')
continue; //删除多余的字符
return is;
}
//新载函数的方法实现
void String::stringlow()
{
for (int i = 0; i < len; i++)
{
if (isupper(str[i]))
str[i] = tolower(str[i]);
}
}
void String::stringup()
{
for (int i = 0; i < len; i++)
{
if (islower(str[i]))
str[i] = toupper(str[i]);
}
}
int String::has(char c)
{
int count = 0;
for (int i = 0; i < len; i++)
{
if (str[i] == c)
count++;
}
return count;
}
String operator+(const String &st1, const String &st2)
{
String s;
s.len = st1.len + st2.len;
s.str = new char[s.len + 1];
for (int i = 0; i < st1.len; i++)
{
s.str[i] = st1.str[i];
}
for (int i = st1.len; i < s.len; i++)
{
s.str[i] = st2.str[i - st1.len];
}
s.str[s.len] = NULL;
return s;
}
//加法重载的第二种方式
//String operator+(const String &st1, const String &st2)
//{
// String s;
// s.len = st1.length + st2.length;
// s.str = new char[s.len + 1];
// strcpy(s.str, st1.str);
// strcat(s.str, st2.str);
// return s;
//}
#include<iostream>
using namespace std;
#include"queue.h"
int main()
{
String s1(" and I am a C++ student.");
String s2 = "Please enter your name: ";
String s3;
cout << s2; //重载<<运算符
cin >> s3; //重载>>运算符
s2 = "My name is " + s3; //重载=,+运算符
cout << s2 << ".\n";
s2 = s2 + s1;
s2.stringup(); //转换成大写
cout << "The string\n" << s2 << "\ncontains " << s2.has('A')
<< " 'A' characters in it.\n";
s1 = "red";
String rgb[3] = { String(s1), String("green"),String("blue") };
cout << "Enter the name of a primary color for mixing light: ";
String ans;
bool success = false;
while (cin >> ans)
{
ans.stringlow(); //转换成小写
for (int i = 0; i < 3; i++)
{
if (ans == rgb[i]) //重载==运算符
{
cout << "That's right!\n";
success = true;
break;
}
}
if (success)
break;
else
cout << "Try again!\n";
}
cout << "Bye\n";
return 0;
}
3.
// stock20.h -- augmented version
#ifndef STOCK20_H_
#define STOCK20_H_
#include<iostream>
class Stock
{
private:
char * company;
int shares;
double share_val;
double total_val;
void set_tot() { total_val = shares * share_val; }
public:
Stock(); // default constructor
Stock(const char* co, long n = 0, double pr = 0.0);
~Stock(); // do-nothing destructor
void buy(long num, double price);
void sell(long num, double price);
void update(double price);
const Stock & topval(const Stock & s) const;
friend std::ostream & operator<<(std::ostream &os, const Stock &st); /*void show()const;*/
};
#endif
// stock20.cpp -- augmented version
#include "stock20.h"
#include<cstring>
using namespace std;
// constructors
Stock::Stock() // default constructor
{
company = new char[1];
company[0] = '\0';
shares = 0;
share_val = 0.0;
total_val = 0.0;
}
Stock::Stock(const char *co, long n, double pr)
{
int len;
len = strlen(co);
company = new char[len + 1];
strcpy_s(company,len+1, co);
if (n < 0)
{
std::cout << "Number of shares can't be negative; "
<< company << " shares set to 0.\n";
shares = 0;
}
else
shares = n;
share_val = pr;
set_tot();
}
// class destructor
Stock::~Stock() // quiet class destructor
{
delete[] company;
}
// other methods
void Stock::buy(long num, double price)
{
if (num < 0)
{
std::cout << "Number of shares purchased can't be negative. "
<< "Transaction is aborted.\n";
}
else
{
shares += num;
share_val = price;
set_tot();
}
}
void Stock::sell(long num, double price)
{
using std::cout;
if (num < 0)
{
cout << "Number of shares sold can't be negative. "
<< "Transaction is aborted.\n";
}
else if (num > shares)
{
cout << "You can't sell more than you have! "
<< "Transaction is aborted.\n";
}
else
{
shares -= num;
share_val = price;
set_tot();
}
}
void Stock::update(double price)
{
share_val = price;
set_tot();
}
const Stock & Stock::topval(const Stock & s) const
{
if (s.total_val > total_val)
return s;
else
return *this;
}
std::ostream & operator<<(std::ostream &os, const Stock &st)
{
using std::ios_base;
//set format to #.###
ios_base::fmtflags orig = os.setf(ios_base::fixed, ios_base::floatfield);
std::streamsize prec = os.precision(3);
os << "Company:" << st.company << " Shares:" << st.shares << '\n';
os << " Share Price:$" << st.share_val;
//set format to #.##
os.precision(2);
os << " Total Worth:$" << st.total_val << '\n';
//格式复原
os.setf(orig, ios_base::floatfield);
os.precision(prec);
return os;
}
//void Stock::show() const
//{
// using std::cout;
// using std::ios_base;
// // set format to #.###
// ios_base::fmtflags orig =
// cout.setf(ios_base::fixed, ios_base::floatfield);
// std::streamsize prec = cout.precision(3);
//
// cout << "Company: " << company
// << " Shares: " << shares << '\n';
// cout << " Share Price: $" << share_val;
// // set format to #.##
// cout.precision(2);
// cout << " Total Worth: $" << total_val << '\n';
//
// // restore original format
// cout.setf(orig, ios_base::floatfield);
// cout.precision(prec);
//}
// usestok2.cpp -- using the Stock class
// compile with stock20.cpp
#include <iostream>
#include "stock20.h"
const int STKS = 4;
int main()
{
// create an array of initialized objects
Stock stocks[STKS] = {
Stock("NanoSmart", 12, 20.0),
Stock("Boffo Objects", 200, 2.0),
Stock("Monolithic Obelisks", 130, 3.25),
Stock("Fleep Enterprises", 60, 6.5)
};
std::cout << "Stock holdings:\n";
int st;
for (st = 0; st < STKS; st++)
std::cout<<stocks[st];
// set pointer to first element
const Stock * top = &stocks[0];
for (st = 1; st < STKS; st++)
top = &top->topval(stocks[st]);
// now top points to the most valuable holding
std::cout << "\nMost valuable holding:\n";
std::cout << *top;
// std::cin.get();
return 0;
}
4.
// stack.h -- class definition for the stack ADT
#ifndef STACK_H_
#define STACK_H_
typedef unsigned long Item;
class Stack
{
private:
enum {MAX = 10}; // constant specific to class
Item *pitems; // holds stack items
int size; //number of elements in stack
int top; // index for top stack item
public:
Stack(int n=MAX); //creates stack with n elements
Stack(const Stack& st);
~Stack();
bool isempty() const;
bool isfull() const;
// push() returns false if stack already is full, true otherwise
bool push(const Item & item); // add item to stack
// pop() returns false if stack already is empty, true otherwise
bool pop(Item & item); // pop top into item
Stack & operator=(const Stack & st);
};
#endif
// stack.cpp -- Stack member functions
#include "stack.h"
Stack::Stack(int n)
{
size = n;
pitems = new Item[n];
top = 0;
}
Stack::Stack(const Stack& st)
{
size = st.size;
pitems = new Item[size + 1];
for (top = 0; top < size; ++top)
pitems[top] = st.pitems[top];
}
Stack::~Stack()
{
delete[] pitems;
pitems = 0;
size = top = 0;
}
bool Stack::isempty() const
{
return top == 0;
}
bool Stack::isfull() const
{
return top == MAX;
}
bool Stack::push(const Item & item)
{
if (top < MAX)
{
pitems[top++] = item;
return true;
}
else
return false;
}
bool Stack::pop(Item & item)
{
if (top > 0)
{
item = pitems[--top];
return true;
}
else
return false;
}
Stack & Stack::operator=(const Stack & st)
{
if (this == &st)
return *this;
delete[] pitems;
size = st.size;
pitems = new Item[size + 1];
for (top = 0; top < size; top++)
pitems[top] = st.pitems[top];
return *this;
}
// stacker.cpp -- testing the Stack class
#include <iostream>
#include "stack.h"
int main()
{
using namespace std;
Stack st;
cout << "Is st empty:";
cout << st.isempty() << endl;
cout << "Is st full:";
cout << st.isfull() << endl;
Item it[10];
cout << "Push to st:";
for (int i = 0; i < 10; i++)
{
it[i] = i + 1;
st.push(it[i]);
cout << it[i] << " ";
}
cout << "\nIs st full:";
cout << st.isfull() << endl;
Stack po;
cout << "\nAt first\nIs po empty:";
cout << po.isempty()<<endl;
po = st;
cout << "\nAfter po=st\nIs po empty:";
cout << po.isempty();
cout << "\nIs po full:";
cout << po.isfull() << endl;
cout << "\nPop to st:";
for (int i = 0; i < 10; i++)
{
st.pop(it[i]);
cout << it[i] << " ";
}
cout << "\nIs st empty:";
cout << st.isempty() << endl;
return 0;
}
5.程序清单12-10、12-11、12-12//输入(10,100,18)进行测试
// queue.h -- interface for a queue
#ifndef QUEUE_H_
#define QUEUE_H_
// This queue will contain Customer items
class Customer
{
private:
long arrive; // arrival time for customer
int processtime; // processing time for customer
public:
Customer() : arrive(0), processtime (0){}
void set(long when);
long when() const { return arrive; }
int ptime() const { return processtime; }
};
typedef Customer Item;
class Queue
{
private:
// class scope definitions
// Node is a nested structure definition local to this class
struct Node { Item item; struct Node * next;};
enum {Q_SIZE = 10};
// private class members
Node * front; // pointer to front of Queue
Node * rear; // pointer to rear of Queue
int items; // current number of items in Queue
const int qsize; // maximum number of items in Queue
// preemptive definitions to prevent public copying
Queue(const Queue & q) : qsize(0) { }
Queue & operator=(const Queue & q) { return *this;}
public:
Queue(int qs = Q_SIZE); // create queue with a qs limit
~Queue();
bool isempty() const;
bool isfull() const;
int queuecount() const;
bool enqueue(const Item &item); // add item to end
bool dequeue(Item &item); // remove item from front
};
#endif
// queue.cpp -- Queue and Customer methods
#include "queue.h"
#include <cstdlib> // (or stdlib.h) for rand()
// Queue methods
Queue::Queue(int qs) : qsize(qs)
{
front = rear = NULL; // or nullptr
items = 0;
}
Queue::~Queue()
{
Node * temp;
while (front != NULL) // while queue is not yet empty
{
temp = front; // save address of front item
front = front->next;// reset pointer to next item
delete temp; // delete former front
}
}
bool Queue::isempty() const
{
return items == 0;
}
bool Queue::isfull() const
{
return items == qsize;
}
int Queue::queuecount() const
{
return items;
}
// Add item to queue
bool Queue::enqueue(const Item & item)
{
if (isfull())
return false;
Node * add = new Node; // create node
// on failure, new throws std::bad_alloc exception
add->item = item; // set node pointers
add->next = NULL; // or nullptr;
items++;
if (front == NULL) // if queue is empty,
front = add; // place item at front
else
rear->next = add; // else place at rear
rear = add; // have rear point to new node
return true;
}
// Place front item into item variable and remove from queue
bool Queue::dequeue(Item & item)
{
if (front == NULL)
return false;
item = front->item; // set item to first item in queue
items--;
Node * temp = front; // save location of first item
front = front->next; // reset front to next item
delete temp; // delete former first item
if (items == 0)
rear = NULL;
return true;
}
// customer method
// when is the time at which the customer arrives
// the arrival time is set to when and the processing
// time set to a random value in the range 1 - 3
void Customer::set(long when)
{
processtime = std::rand() % 3 + 1;
arrive = when;
}
// bank.cpp -- using the Queue interface
// compile with queue.cpp
#include <iostream>
#include <cstdlib> // for rand() and srand()
#include <ctime> // for time()
#include "queue.h"
const int MIN_PER_HR = 60;
bool newcustomer(double x); // is there a new customer?
int main()
{
using std::cin;
using std::cout;
using std::endl;
using std::ios_base;
// setting things up
std::srand(std::time(0)); // random initializing of rand()
cout << "Case Study: Bank of Heather Automatic Teller\n";
cout << "Enter maximum size of queue: ";
int qs;
cin >> qs;
Queue line(qs); // line queue holds up to qs people
cout << "Enter the number of simulation hours: ";
int hours; // hours of simulation
cin >> hours;
// simulation will run 1 cycle per minute
long cyclelimit = MIN_PER_HR * hours; // # of cycles
cout << "Enter the average number of customers per hour: ";
double perhour; // average # of arrival per hour
cin >> perhour;
double min_per_cust; // average time between arrivals
min_per_cust = MIN_PER_HR / perhour;
Item temp; // new customer data
long turnaways = 0; // turned away by full queue
long customers = 0; // joined the queue
long served = 0; // served during the simulation
long sum_line = 0; // cumulative line length
int wait_time = 0; // time until autoteller is free
long line_wait = 0; // cumulative time in line
// running the simulation
for (int cycle = 0; cycle < cyclelimit; cycle++)
{
if (newcustomer(min_per_cust)) // have newcomer
{
if (line.isfull())
turnaways++;
else
{
customers++;
temp.set(cycle); // cycle = time of arrival
line.enqueue(temp); // add newcomer to line
}
}
if (wait_time <= 0 && !line.isempty())
{
line.dequeue (temp); // attend next customer
wait_time = temp.ptime(); // for wait_time minutes
line_wait += cycle - temp.when();
served++;
}
if (wait_time > 0)
wait_time--;
sum_line += line.queuecount();
}
// reporting results
if (customers > 0)
{
cout << "customers accepted: " << customers << endl;
cout << " customers served: " << served << endl;
cout << " turnaways: " << turnaways << endl;
cout << "average queue size: ";
cout.precision(2);
cout.setf(ios_base::fixed, ios_base::floatfield);
cout << (double) sum_line / cyclelimit << endl;
cout << " average wait time: "
<< (double) line_wait / served << " minutes\n";
}
else
cout << "No customers!\n";
cout << "Done!\n";
// cin.get();
// cin.get();
return 0;
}
// x = average time, in minutes, between customers
// return value is true if customer shows up this minute
bool newcustomer(double x)
{
return (std::rand() * x / RAND_MAX < 1);
}
6.
// queue.h -- interface for a queue
#ifndef QUEUE_H_
#define QUEUE_H_
// This queue will contain Customer items
class Customer
{
private:
long arrive; // arrival time for customer
int processtime; // processing time for customer
public:
Customer() : arrive(0), processtime (0){}
void set(long when);
long when() const { return arrive; }
int ptime() const { return processtime; }
};
typedef Customer Item;
class Queue
{
private:
// class scope definitions
// Node is a nested structure definition local to this class
struct Node { Item item; struct Node * next;};
enum {Q_SIZE = 10};
// private class members
Node * front; // pointer to front of Queue
Node * rear; // pointer to rear of Queue
int items; // current number of items in Queue
const int qsize; // maximum number of items in Queue
// preemptive definitions to prevent public copying
Queue(const Queue & q) : qsize(0) { }
Queue & operator=(const Queue & q) { return *this;}
public:
Queue(int qs = Q_SIZE); // create queue with a qs limit
~Queue();
bool isempty() const;
bool isfull() const;
int queuecount() const;
bool enqueue(const Item &item); // add item to end
bool dequeue(Item &item); // remove item from front
friend bool operator>(const Queue & item1, const Queue & item2);
};
#endif
// queue.cpp -- Queue and Customer methods
#include "queue.h"
#include <cstdlib> // (or stdlib.h) for rand()
// Queue methods
Queue::Queue(int qs) : qsize(qs)
{
front = rear = NULL; // or nullptr
items = 0;
}
Queue::~Queue()
{
Node * temp;
while (front != NULL) // while queue is not yet empty
{
temp = front; // save address of front item
front = front->next;// reset pointer to next item
delete temp; // delete former front
}
}
bool Queue::isempty() const
{
return items == 0;
}
bool Queue::isfull() const
{
return items == qsize;
}
int Queue::queuecount() const
{
return items;
}
// Add item to queue
bool Queue::enqueue(const Item & item)
{
if (isfull())
return false;
Node * add = new Node; // create node
// on failure, new throws std::bad_alloc exception
add->item = item; // set node pointers
add->next = NULL; // or nullptr;
items++;
if (front == NULL) // if queue is empty,
front = add; // place item at front
else
rear->next = add; // else place at rear
rear = add; // have rear point to new node
return true;
}
// Place front item into item variable and remove from queue
bool Queue::dequeue(Item & item)
{
if (front == NULL)
return false;
item = front->item; // set item to first item in queue
items--;
Node * temp = front; // save location of first item
front = front->next; // reset front to next item
delete temp; // delete former first item
if (items == 0)
rear = NULL;
return true;
}
//比较人数
bool operator>(const Queue & item1, const Queue & item2)
{
return item1.items > item2.items;
}
// customer method
// when is the time at which the customer arrives
// the arrival time is set to when and the processing
// time set to a random value in the range 1 - 3
void Customer::set(long when)
{
processtime = std::rand() % 3 + 1;
arrive = when;
}
// bank.cpp -- 建立两个队列进行计算
// compile with queue.cpp
#include <iostream>
#include <cstdlib> // for rand() and srand()
#include <ctime> // for time()
#include "queue.h"
const int MIN_PER_HR = 60;
bool newcustomer(double x); // is there a new customer?
int main()
{
using std::cin;
using std::cout;
using std::endl;
using std::ios_base;
// setting things up
std::srand(std::time(0)); // random initializing of rand()
cout << "Case Study: Bank of Heather Automatic Teller\n";
cout << "Enter maximum size of queue: ";
int qs;
cin >> qs;
Queue line1(qs); // line queue holds up to qs people
Queue line2(qs); //分成两个队伍进行计算
cout << "Enter the number of simulation hours: ";
int hours; // hours of simulation
cin >> hours;
// simulation will run 1 cycle per minute
long cyclelimit = MIN_PER_HR * hours; // # of cycles
cout << "Enter the average number of customers per hour: ";
double perhour; // average # of arrival per hour
cin >> perhour;
double min_per_cust; // average time between arrivals
min_per_cust = MIN_PER_HR / perhour;
Item temp; // new customer data
long turnaways = 0; // turned away by full queue
long customers = 0; // joined the queue
long served = 0; // served during the simulation
long sum_line = 0; // cumulative line length
int wait1_time = 0; // time until autoteller is free
int wait2_time = 0;
long line1_wait = 0; // cumulative time in line
long line2_wait = 0;
// running the simulation
for (int cycle = 0; cycle < cyclelimit; cycle++)
{
if (newcustomer(min_per_cust)) // have newcomer
{
if (line1.isfull()&&line2.isfull())
turnaways++;
else if(line2>line1||line1.isfull())
{
customers++;
temp.set(cycle); // cycle = time of arrival
line1.enqueue(temp); // add newcomer to line1
}
else
{
customers++;
temp.set(cycle); // cycle = time of arrival
line2.enqueue(temp); // add newcomer to line2
}
}
if (wait1_time <= 0 && !line1.isempty())
{
line1.dequeue (temp); // attend next customer
wait1_time = temp.ptime(); // for wait_time minutes
line1_wait += cycle - temp.when();
served++;
}
if (wait2_time <= 0 && !line2.isempty())
{
line2.dequeue(temp); // attend next customer
wait2_time = temp.ptime(); // for wait_time minutes
line2_wait += cycle - temp.when();
served++;
}
if (wait1_time > 0)
wait1_time--;
sum_line += line1.queuecount();
if (wait2_time > 0)
wait2_time--;
sum_line += line2.queuecount();
}
// reporting results
if (customers > 0)
{
cout << "customers accepted: " << customers << endl;
cout << " customers served: " << served << endl;
cout << " turnaways: " << turnaways << endl;
cout << "average queue size: ";
cout.precision(2);
cout.setf(ios_base::fixed, ios_base::floatfield);
cout << (double) sum_line / cyclelimit << endl;
cout << " average wait time: "
<< (double) (line1_wait+line2_wait) / served << " minutes\n";
}
else
cout << "No customers!\n";
cout << "Done!\n";
// cin.get();
// cin.get();
return 0;
}
// x = average time, in minutes, between customers
// return value is true if customer shows up this minute
bool newcustomer(double x)
{
return (std::rand() * x / RAND_MAX < 1);
}
另一种方法:
#include<iostream>
#include<cstdlib>
#include<ctime>
#include"queue.h"
const int MIN_PER_HR = 60;
bool newCustomer(double x) //每隔x次,rand()/RAND_max会有一次值<1
{
return (std::rand()*x / RAND_MAX < 1);
}
int main()
{
using std::cin;
using std::cout;
using std::endl;
using std::ios_base;
srand(time(0)); //初始化rand();
cout << "Case Study:Bank of Heather Automatic Teller" << endl;
cout << "Enter maximum size of queue:";
int qs;
cin >> qs;
Queue line(qs);
Queue line2(qs); //视为同样大小的队列
cout << "Enter the number of simulation hours:";
int hours;
cin >> hours;
long cyclelimit = MIN_PER_HR*hours; //循环的分钟数
cout << "Enter the average number of customers per hour:"; //一小时来的人数
double perhour;
cin >> perhour;
double min_per_cust;
min_per_cust = MIN_PER_HR / perhour; //平均多少分钟来一个人
Item temp;
long turnaways = 0;
long customers = 0;
long served = 0;
long sum_line = 0;
int wait_time = 0;
int wait_time2 = 0; //等待时间要+1个
long line_wait = 0;
for (int cycle = 0; cycle < cyclelimit; cycle++) //cycle每循环一次,代表过了一分钟
{
if (newCustomer(min_per_cust))
{
if (line.isfull() && line2.isfull()) //当两个队列都满的时候才拒绝服务
turnaways++; //拒绝服务的人数
else
{
customers++;
temp.set(cycle); //cycle是到达时间
if (line.queuecount() >= line2.queuecount())
line2.enqueue(temp);
else
line.enqueue(temp);
}
}
if (wait_time <= 0 && !line.isempty()) //队列1中有用户处理完业务
{
line.dequeue(temp);
wait_time = temp.ptime(); //wait_time是该客户处理业务所用时间
line_wait += cycle - temp.when(); //cycle_temp.when()是该客户一共在队列中等待了多久
served++; //服务人数+1
}
if (wait_time2 <= 0 && !line2.isempty()) //队列1中有用户处理完业务
{
line.dequeue(temp);
wait_time = temp.ptime(); //wait_time是该客户处理业务所用时间
line_wait += cycle - temp.when(); //cycle_temp.when()是该客户一共在队列中等待了多久
served++; //服务人数+1
}
if (wait_time > 0) //队列1正在处理业务的处理时间-1,因为过了一分钟
wait_time--;
if (wait_time2 > 0) //队列1正在处理业务的处理时间-1,因为过了一分钟
wait_time2--; //wait_time=temp.ptime()这里随机设置了wait_time
sum_line += line.queuecount() + line2.queuecount(); //sum_line是队伍总长度,每分钟计算一次队伍长度
}
// reporting results
if (customers > 0)
{
cout << "customers accepted: " << customers << endl;
cout << " customers served: " << served << endl;
cout << " turnaways: " << turnaways << endl;
cout << "average queue size: ";
cout.precision(2);
cout.setf(ios_base::fixed, ios_base::floatfield);
cout << (double) sum_line / cyclelimit << endl;
cout << " average wait time: "
<< (double) line_wait / served << " minutes\n";
}
else
cout << "No customers!\n";
cout << "Done!\n";
// cin.get();
// cin.get();
return 0;
}