CyclicBarrier是回环屏障的意思,它可以让一组线程全部达到一个状态后再全部同时执行,之所以叫回环是因为当所有线程执行完毕,可以重置CyclicBarrier状态,进行复用,这也是它与CountDownLatch的主要区别,下面介绍一个案例:
public class CyclicBarrierTest {
public static void main(String[] args) {
int N = 4;
CyclicBarrier barrier = new CyclicBarrier(N);
for(int i=0;i<N;i++)
new Writer(barrier).start();
}
static class Writer extends Thread{
private CyclicBarrier cyclicBarrier;
public Writer(CyclicBarrier cyclicBarrier) {
this.cyclicBarrier = cyclicBarrier;
}
@Override
public void run() {
System.out.println("线程"+Thread.currentThread().getName()+"正在写入数据...");
try {
Thread.sleep(5000); //以睡眠来模拟写入数据操作
System.out.println("线程"+Thread.currentThread().getName()+"写入数据完毕,等待其他线程写入完毕");
cyclicBarrier.await();
} catch (InterruptedException e) {
e.printStackTrace();
}catch(BrokenBarrierException e){
e.printStackTrace();
}
System.out.println("所有线程写入完毕,继续处理其他任务...");
}
}
}
执行结果:
线程Thread-0正在写入数据...
线程Thread-3正在写入数据...
线程Thread-1正在写入数据...
线程Thread-2正在写入数据...
线程Thread-1写入数据完毕,等待其他线程写入完毕
线程Thread-2写入数据完毕,等待其他线程写入完毕
线程Thread-3写入数据完毕,等待其他线程写入完毕
线程Thread-0写入数据完毕,等待其他线程写入完毕
所有线程写入完毕,继续处理其他任务...
所有线程写入完毕,继续处理其他任务...
所有线程写入完毕,继续处理其他任务...
所有线程写入完毕,继续处理其他任务...
上面的例子说明多个线程之间是相互等待的,假如计数器为N,那么随后调用await()方法的N-1个线程都会因为达到屏障点而被阻塞,当第N个线程调用await()方法后,计数器的值为0,这时第N个线程会通知唤醒前面的N-1个线程。下面的案例证明CyclicBarrier的可复用性:
public class CyclicBarrierTest {
private static CyclicBarrier cyclicBarrier=new CyclicBarrier(2);
public static void main(String[] args) {
ExecutorService executorService= Executors.newFixedThreadPool(2);
executorService.submit(new Runnable() {
@Override
public void run() {
try {
System.out.println(Thread.currentThread()+" step1");
cyclicBarrier.await();
System.out.println(Thread.currentThread()+" step2");
cyclicBarrier.await();
System.out.println(Thread.currentThread()+" step3");
}catch (Exception e){
e.printStackTrace();
}
}
});
executorService.submit(new Runnable() {
@Override
public void run() {
try {
System.out.println(Thread.currentThread()+" step1");
cyclicBarrier.await();
System.out.println(Thread.currentThread()+" step2");
cyclicBarrier.await();
System.out.println(Thread.currentThread()+" step3");
}catch (Exception e){
e.printStackTrace();
}
}
});
executorService.shutdown();
}
}
运行结果:
Thread[pool-1-thread-1,5,main] step1
Thread[pool-1-thread-2,5,main] step1
Thread[pool-1-thread-2,5,main] step2
Thread[pool-1-thread-1,5,main] step2
Thread[pool-1-thread-1,5,main] step3
Thread[pool-1-thread-2,5,main] step3
为了了解CyclicBarrier的原理,我们来看一下该类的架构设计:
public class CyclicBarrier {
private static class Generation {
boolean broken = false;
}
//独占锁实例
private final ReentrantLock lock = new ReentrantLock();
private final Condition trip = lock.newCondition();
//记录线程的个数
private final int parties;
//任务线程
private final Runnable barrierCommand;
private Generation generation = new Generation();
//计数器
private int count; //通过维护parties和count两个变量来进行CyclicBarrier的复用
private void nextGeneration() {
// 唤醒条件队列所有线程
trip.signalAll();
// 将parties的值传递给count,进行复用
count = parties;
generation = new Generation();
}
private void breakBarrier() {
//记录屏障是否被打破
generation.broken = true;
count = parties;
trip.signalAll();
}
//当线程调用dawait方法后,会获取独占锁,其它竞争线程被阻塞
private int dowait(boolean timed, long nanos)
throws InterruptedException, BrokenBarrierException,
TimeoutException {
final ReentrantLock lock = this.lock;
lock.lock();
try {
final Generation g = generation;
if (g.broken)
throw new BrokenBarrierException();
if (Thread.interrupted()) {
breakBarrier();
throw new InterruptedException();
}
//获取锁的线程对count进行自减操作
int index = --count;
//满足条件则知所有线程都到达了屏障点,开始执行传递的任务
if (index == 0) {
boolean ranAction = false;
try {
final Runnable command = barrierCommand;
//执行传递的任务
if (command != null)
command.run();
ranAction = true;
//激活其它被阻塞的线程,并重置CyclicBarrier的计数
nextGeneration();
return 0;
} finally {
if (!ranAction)
breakBarrier();
}
}
// 经典的无限自传循环,直到满足条件
for (;;) {
try {
if (!timed)
trip.await();
//设置了超时时间
else if (nanos > 0L)
nanos = trip.awaitNanos(nanos);
} catch (InterruptedException ie) {
if (g == generation && ! g.broken) {
breakBarrier();
throw ie;
} else {
// We're about to finish waiting even if we had not
// been interrupted, so this interrupt is deemed to
// "belong" to subsequent execution.
Thread.currentThread().interrupt();
}
}
if (g.broken)
throw new BrokenBarrierException();
if (g != generation)
return index;
if (timed && nanos <= 0L) {
breakBarrier();
throw new TimeoutException();
}
}
} finally {
lock.unlock();
}
}
//初始化屏障计数
public CyclicBarrier(int parties, Runnable barrierAction) {
if (parties <= 0) throw new IllegalArgumentException();
this.parties = parties;
将parties的值传递给count,进行复用重置
this.count = parties;
this.barrierCommand = barrierAction;
}
//调用cyclicBarrier的构造方法
public CyclicBarrier(int parties) {
this(parties, null);
}
//调用dowait()方法
public int await(long timeout, TimeUnit unit)
throws InterruptedException,
BrokenBarrierException,
TimeoutException {
//true说明了设置了超时时间
return dowait(true, unit.toNanos(timeout));
}
}
由上述源代码可知,CyclicBarrier基于独占锁实现,本质还是之前讲述过的AQS。CyclicBarrier维护parties和count两个变量,初始化时,count等于parties,每当有线程调用await()方法时,count值减去1,当count值为0时表示所有线程都达到了屏障点,维护两个变量是为了进行CyclicBarrier的复用,当count为0时,会将parties的值传给count,这个过程是在构造CyclicBarrier传递的。在变量generation内部维护一个变量broken,用来记录变量是否被打破。