机器学习-7.0模型融合

一、Voting

模型融合其实也没有想象的那么高大上,从最简单的Voting说起,这也可以说是一种模型融合。假设对于一个二分类问题,有3个基础模型,那么就采取投票制的方法,投票多者确定为最终的分类。

二、Averaging

对于回归问题,一个简单直接的思路是取平均。稍稍改进的方法是进行加权平均。权值可以用排序的方法确定,举个例子,比如A、B、C三种基本模型,模型效果进行排名,假设排名分别是1,2,3,那么给这三个模型赋予的权值分别是3/6、2/6、1/6
这两种方法看似简单,其实后面的高级算法也可以说是基于此而产生的,Bagging或者Boosting都是一种把许多弱分类器这样融合成强分类器的思想。

三、Bagging

Bagging就是采用有放回的方式进行抽样,用抽样的样本建立子模型,对子模型进行训练,这个过程重复多次,最后进行融合。大概分为这样两步:

  1. 重复K次
  • 有放回地重复抽样建模
  • 训练子模型

2.模型融合

  • 分类问题:voting
  • 回归问题:average

Bagging算法不用我们自己实现,随机森林就是基于Bagging算法的一个典型例子,采用的基分类器是决策树。R和python都集成好了,直接调用。

四、Boosting

Bagging算法可以并行处理,而Boosting的思想是一种迭代的方法,每一次训练的时候都更加关心分类错误的样例,给这些分类错误的样例增加更大的权重,下一次迭代的目标就是能够更容易辨别出上一轮分类错误的样例。最终将这些弱分类器进行加权相加。引用加州大学欧文分校Alex Ihler教授的两页PPT
 


同样地,基于Boosting思想的有AdaBoost、GBDT等,在R和python也都是集成好了直接调用。
PS:理解了这两点,面试的时候关于Bagging、Boosting的区别就可以说上来一些,问Randomfroest和AdaBoost的区别也可以从这方面入手回答。也算是留一个小问题,随机森林、Adaboost、GBDT、XGBoost的区别是什么?

五、Stacking

简单来说 stacking 就是当用初始训练数据学习出若干个基学习器后,将这几个学习器的预测结果作为新的训练集,来学习一个新的学习器。

Image

将个体学习器结合在一起的时候使用的方法叫做结合策略。对于分类问题,我们可以使用投票法来选择输出最多的类。对于回归问题,我们可以将分类器输出的结果求平均值。

上面说的投票法和平均法都是很有效的结合策略,还有一种结合策略是使用另外一个机器学习算法来将个体机器学习器的结果结合在一起,这个方法就是Stacking。

在stacking方法中,我们把个体学习器叫做初级学习器,用于结合的学习器叫做次级学习器或元学习器(meta-learner),次级学习器用于训练的数据叫做次级训练集。次级训练集是在训练集上用初级学习器得到的。

2) 如何进行 stacking

算法示意图如下:

Image

  • 过程1-3 是训练出来个体学习器,也就是初级学习器。
  • 过程5-9是 使用训练出来的个体学习器来得预测的结果,这个预测的结果当做次级学习器的训练集。
  • 过程11 是用初级学习器预测的结果训练出次级学习器,得到我们最后训练的模型。

3)Stacking的方法讲解

首先,我们先从一种“不那么正确”但是容易懂的Stacking方法讲起。

Stacking模型本质上是一种分层的结构,这里简单起见,只分析二级Stacking.假设我们有2个基模型 Model1_1、Model1_2 和 一个次级模型Model2

Step 1. 基模型 Model1_1,对训练集train训练,然后用于预测 train 和 test 的标签列,分别是P1,T1

Model1_1 模型训练:

训练后的模型 Model1_1 分别在 train 和 test 上预测,得到预测标签分别是P1,T1

Step 2. 基模型 Model1_2 ,对训练集train训练,然后用于预测train和test的标签列,分别是P2,T2

Model1_2 模型训练:

训练后的模型 Model1_2 分别在 train 和 test 上预测,得到预测标签分别是P2,T2

Step 3. 分别把P1,P2以及T1,T2合并,得到一个新的训练集和测试集train2,test2.

再用 次级模型 Model2 以真实训练集标签为标签训练,以train2为特征进行训练,预测test2,得到最终的测试集预测的标签列 YPreYPre。

这就是我们两层堆叠的一种基本的原始思路想法。在不同模型预测的结果基础上再加一层模型,进行再训练,从而得到模型最终的预测。

Stacking本质上就是这么直接的思路,但是直接这样有时对于如果训练集和测试集分布不那么一致的情况下是有一点问题的,其问题在于用初始模型训练的标签再利用真实标签进行再训练,毫无疑问会导致一定的模型过拟合训练集,这样或许模型在测试集上的泛化能力或者说效果会有一定的下降,因此现在的问题变成了如何降低再训练的过拟合性,这里我们一般有两种方法。

1.次级模型尽量选择简单的线性模型

2.利用K折交叉验证

K-折交叉验证: 训练:

Image

预测:

Image

训练图示如下:

stacking使用多折交叉验证,比使用单一留出集更加稳健 

六、Blending

Blending训练图示如下:

blending是直接准备好一部分10%留出集只在留出集上继续预测,用不相交的数据训练不同的 Base Model,将它们的输出取(加权)平均。实现简单,但对训练数据利用少了

七、代码演示

回归融合:

(1) 简单加权平均,结果直接融合

import numpy as np
import pandas as pd
from sklearn import metrics

## 生成一些简单的样本数据,test_prei 代表第i个模型的预测值
test_pre1 = [1.2, 3.2, 2.1, 6.2]
test_pre2 = [0.9, 3.1, 2.0, 5.9]
test_pre3 = [1.1, 2.9, 2.2, 6.0]

# y_test_true 代表第模型的真实值
y_test_true = [1, 3, 2, 6] 

## 定义结果的加权平均函数
def Weighted_method(test_pre1,test_pre2,test_pre3,w=[1/3,1/3,1/3]):
    Weighted_result = w[0]*pd.Series(test_pre1)+w[1]*pd.Series(test_pre2)+w[2]*pd.Series(test_pre3)
    return Weighted_result

# 各模型的预测结果计算MAE
print('Pred1 MAE:',metrics.mean_absolute_error(y_test_true, test_pre1))
print('Pred2 MAE:',metrics.mean_absolute_error(y_test_true, test_pre2))
print('Pred3 MAE:',metrics.mean_absolute_error(y_test_true, test_pre3))

## 根据加权计算MAE
w = [0.3,0.4,0.3] # 定义比重权值
Weighted_pre = Weighted_method(test_pre1,test_pre2,test_pre3,w)
print('Weighted_pre MAE:',metrics.mean_absolute_error(y_test_true, Weighted_pre))
## 定义结果的加权平均函数
def Mean_method(test_pre1,test_pre2,test_pre3):
    Mean_result = pd.concat([pd.Series(test_pre1),pd.Series(test_pre2),pd.Series(test_pre3)],axis=1).mean(axis=1)
    return Mean_result

Mean_pre = Mean_method(test_pre1,test_pre2,test_pre3)
print('Mean_pre MAE:',metrics.mean_absolute_error(y_test_true, Mean_pre))

## 定义结果的加权平均函数
def Median_method(test_pre1,test_pre2,test_pre3):
    Median_result = pd.concat([pd.Series(test_pre1),pd.Series(test_pre2),pd.Series(test_pre3)],axis=1).median(axis=1)
    return Median_result

Median_pre = Median_method(test_pre1,test_pre2,test_pre3)
print('Median_pre MAE:',metrics.mean_absolute_error(y_test_true, Median_pre))

(2) Stacking融合(回归)

from sklearn import linear_model

def Stacking_method(train_reg1,train_reg2,train_reg3,y_train_true,test_pre1,test_pre2,test_pre3,model_L2= linear_model.LinearRegression()):
    model_L2.fit(pd.concat([pd.Series(train_reg1),pd.Series(train_reg2),pd.Series(train_reg3)],axis=1).values,y_train_true)
    Stacking_result = model_L2.predict(pd.concat([pd.Series(test_pre1),pd.Series(test_pre2),pd.Series(test_pre3)],axis=1).values)
    return Stacking_result

## 生成一些简单的样本数据,test_prei 代表第i个模型的预测值
train_reg1 = [3.2, 8.2, 9.1, 5.2]
train_reg2 = [2.9, 8.1, 9.0, 4.9]
train_reg3 = [3.1, 7.9, 9.2, 5.0]
# y_test_true 代表第模型的真实值
y_train_true = [3, 8, 9, 5] 

test_pre1 = [1.2, 3.2, 2.1, 6.2]
test_pre2 = [0.9, 3.1, 2.0, 5.9]
test_pre3 = [1.1, 2.9, 2.2, 6.0]

# y_test_true 代表第模型的真实值
y_test_true = [1, 3, 2, 6] 

model_L2= linear_model.LinearRegression()
Stacking_pre = Stacking_method(train_reg1,train_reg2,train_reg3,y_train_true,
                               test_pre1,test_pre2,test_pre3,model_L2)
print('Stacking_pre MAE:',metrics.mean_absolute_error(y_test_true, Stacking_pre))

分类模型融合

(1) Voting投票机制

Voting即投票机制,分为软投票和硬投票两种,其原理采用少数服从多数的思想。

'''
硬投票:对多个模型直接进行投票,不区分模型结果的相对重要度,最终投票数最多的类为最终被预测的类。
'''
iris = datasets.load_iris()

x=iris.data
y=iris.target
x_train,x_test,y_train,y_test=train_test_split(x,y,test_size=0.3)

clf1 = lgb.LGBMClassifier(learning_rate=0.1, n_estimators=150, max_depth=3, min_child_weight=2, subsample=0.7,
                     colsample_bytree=0.6, objective='binary:logistic')
clf2 = RandomForestClassifier(n_estimators=200, max_depth=10, min_samples_split=10,
                              min_samples_leaf=63,oob_score=True)
clf3 = SVC(C=0.1)

# 硬投票
eclf = VotingClassifier(estimators=[('lgb', clf1), ('rf', clf2), ('svc', clf3)], voting='hard')
for clf, label in zip([clf1, clf2, clf3, eclf], ['LGB', 'Random Forest', 'SVM', 'Ensemble']):
    scores = cross_val_score(clf, x, y, cv=5, scoring='accuracy')
    print("Accuracy: %0.2f (+/- %0.2f) [%s]" % (scores.mean(), scores.std(), label))

(2) 分类的Stacking融合

import warnings

warnings.filterwarnings('ignore')
import itertools
import numpy as np
import seaborn as sns
import matplotlib.pyplot as plt
import matplotlib.gridspec as gridspec
from sklearn import datasets
from sklearn.linear_model import LogisticRegression
from sklearn.neighbors import KNeighborsClassifier
from sklearn.naive_bayes import GaussianNB
from sklearn.ensemble import RandomForestClassifier
from mlxtend.classifier import StackingClassifier
from sklearn.model_selection import cross_val_score, train_test_split
from mlxtend.plotting import plot_learning_curves
from mlxtend.plotting import plot_decision_regions

# 以python自带的鸢尾花数据集为例
iris = datasets.load_iris()
X, y = iris.data[:, 1:3], iris.target

clf1 = KNeighborsClassifier(n_neighbors=1)
clf2 = RandomForestClassifier(random_state=1)
clf3 = GaussianNB()
lr = LogisticRegression()
sclf = StackingClassifier(classifiers=[clf1, clf2, clf3],
                          meta_classifier=lr)

label = ['KNN', 'Random Forest', 'Naive Bayes', 'Stacking Classifier']
clf_list = [clf1, clf2, clf3, sclf]

fig = plt.figure(figsize=(10, 8))
gs = gridspec.GridSpec(2, 2)
grid = itertools.product([0, 1], repeat=2)

clf_cv_mean = []
clf_cv_std = []
for clf, label, grd in zip(clf_list, label, grid):
    scores = cross_val_score(clf, X, y, cv=5, scoring='accuracy')
    print("Accuracy: %.2f (+/- %.2f) [%s]" % (scores.mean(), scores.std(), label))
    clf_cv_mean.append(scores.mean())
    clf_cv_std.append(scores.std())

    clf.fit(X, y)
    ax = plt.subplot(gs[grd[0], grd[1]])
    fig = plot_decision_regions(X=X, y=y, clf=clf)
    plt.title(label)

plt.show()

(3) 分类的Blending融合

# 以python自带的鸢尾花数据集为例
import warnings
warnings.filterwarnings('ignore')
import numpy as np
from sklearn import datasets
from sklearn.linear_model import LogisticRegression
from sklearn.ensemble import RandomForestClassifier
from sklearn.model_selection import train_test_split
from sklearn.ensemble import ExtraTreesClassifier
from sklearn.ensemble import GradientBoostingClassifier
from sklearn import metrics

# 以python自带的鸢尾花数据集为例
iris = datasets.load_iris()
# X, y = iris.data[:, 1:3], iris.target

data_0 = iris.data
data = data_0[:100, :]

target_0 = iris.target
target = target_0[:100]

# 模型融合中基学习器
clfs = [LogisticRegression(),
        RandomForestClassifier(),
        ExtraTreesClassifier(),
        GradientBoostingClassifier()]

# 切分一部分数据作为测试集
X, X_predict, y, y_predict = train_test_split(data, target, test_size=0.3, random_state=914)

# 切分训练数据集为d1,d2两部分
X_d1, X_d2, y_d1, y_d2 = train_test_split(X, y, test_size=0.5, random_state=914)
dataset_d1 = np.zeros((X_d2.shape[0], len(clfs)))
dataset_d2 = np.zeros((X_predict.shape[0], len(clfs)))

for j, clf in enumerate(clfs):
    # 依次训练各个单模型
    clf.fit(X_d1, y_d1)
    x_d2_pre=clf.predict(X_d2)
    x_d2_pr0=clf.predict_proba(X_d2)
    y_submission = clf.predict_proba(X_d2)[:, 1]
    print(y_submission)
    dataset_d1[:, j] = y_submission
    print(dataset_d1)
    # 对于测试集,直接用这k个模型的预测值作为新的特征。
    dataset_d2[:, j] = clf.predict_proba(X_predict)[:, 1]
    print("val auc Score: %f" % metrics.roc_auc_score(y_predict, dataset_d2[:, j]))

# 融合使用的模型
clf = GradientBoostingClassifier()
clf.fit(dataset_d1, y_d2)
d2_pro=clf.predict_proba(dataset_d2)
y_submission = clf.predict_proba(dataset_d2)[:, 1]
print("Val auc Score of Blending: %f" % (metrics.roc_auc_score(y_predict, y_submission)))

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值