点云基础

Point Clouds

 A point cloud is a data structure used to represent a collection of multi-dimensional points and is commonly used to represent three-dimensional data.
 In a 3D point cloud, the points usually represent the X, Y, and Z geometric coordinates of an underlying sampled surface. When color information is present, the point cloud becomes 4D.

1.IO

PCD File Format
A simple file format for storing multi-dimensional point data. It consists of a text header (with the fields below), followed by the data in ASCII (w/ points on separate lines) or binary (a memory
copy of the
points vector of the PC).

  • VERSION - the PCD file version (usually .7)
  • FIELDS - the name of each dimension/field that a point can have (e.g. FIELDS x y z )
  • SIZE - the size of each dimension in bytes (e.g. a float is 4)
  • TYPE - the type of each dimension as a char (I= signed,U= unsigned,Ffloat)
  • COUNT - the number of elements in each dimension (e.g. x, y, or z would only have 1, but a histogram would haveN)
  • WIDTH - the width of the point cloud
  • HEIGHT - the height of the point cloud
  • VIEWPOINT - an acquisition viewpoint for the points: translation (tx ty tz) + quaternion (qw qx qy qz)
  • POINTS - the total number of points in the cloud
  • DATA - the data type that the point cloud data is stored in (asciiorbinary)


2.3D Features


How do we compute normals in practice? 
  • Input: point cloud Pof 3D pointsp= (x;,y,z)T 
 
  • Surface Normal Estimation:
  1. Select a set of pointsQ ⊆ Pfrom the neighborhood ofp.
  2. Fit a local plane throughQ.
  3. Compute the normal~nof the plane.




 setInputCloud = FalsesetInputCloud = True
setSearchSurface = Falsecompute on all points, using all pointscompute on a subset,using all points
setSearchSurface = Truecompute on all points, using a subsetcompute on a subset,using a subse

3.Filtering

 When working with 3D data, there are many reasons for filtering your data:

  • Restricting range (PassThrough)
  • Downsampling (VoxelGrid)
  • Outlier removal(StatisticalOutlierRemoval /RadiusOutlierRemoval)
  • Selecting indices
  • Projecting points

PassThrough Filter 

 Filter out points outside a specified range in one dimension. (Or filter them in with setFilterLimitsNegative)


Downsampling to a Voxel Grid

 Voxelize the cloud to a 3D grid. Each occupied voxel is approximated by the centroid of the points inside of it.


Statistical Outlier Removal

 Filter points based on their local point densities. Remove points that are sparse relative to the mean point density of the whole cloud.

Conditional or Radius Outlier removal



Projecting points

Project points onto a parametric model.


Extracting indices

 Extract a subset of points from a point cloud based on the indices output by a segmentation algorithm.


4.Keypoint

What is a keypoint?

 A keypoint (also known as an \interest point") is simply a point that has been identied as a relevant in some way. A good keypoint detector will find points with the following properties:

  • Sparseness: Typically, only a small subset of the points in the scene are keypoints.
  • Repeatiblity:If a point was determined to be a keypoint in one point cloud, a keypoint should also be found at the corresponding location in a similar point cloud. (Such points are often called "stable".)
  • Distinctiveness:The area surrounding each keypoint should have a unique shape or appearance that can be captured by some feature descriptor.
Why compute keypoints?
  • Some features are expensive to compute, and it would be prohibitive to compute them at every point. Keypoints identifya small number of locationswhere computing feature descriptors is likely to be most effective.
  • When searching for corresponding points, features computed at non-descriptive points will lead to ambiguous feature corespondences. By ignoring non-keypoints, one canreduce error when matching points.

Detecting 3D SIFT Keypoints
Computing PFH Features at Keypoints 
Finding Correspondences

5.Trees

K-d Trees

 A k-d tree, or k-dimensional tree, is a data structure used in computer science for organizing some number of points in a space with k dimensions. It is a binary search tree with other constraints imposed on it. K-d trees are very useful for range and nearest neighbor searches.


Octrees

 An octree is a tree-based data structure for managing sparse 3-D data. Each internal node has exactly eight children.

6.Sample Consensus & Segmentation

 The Random Sample Consensus (RANSAC) algorithm assumes the data is comprised of both inliers and outliers. The distribution of inliers can be explained by a set of parameters and a model. The outlying data does not fit the model. 

Its basic operation:line example
  1. select sample set— 2 points
  2. compute model— line equation
  3. compute and count inliers— e.g.band
  4. repeat untilsufficiently confident — e.g. 95%
several extensions exist in PCL:
  • MSAC (weighted distances instead of hard thresholds)
  • MLESAC (Maximum Likelihood Estimator)
  • PROSAC (Progressive Sample Consensus)
also, several model types are provided in PCL:
  • Plane models (with constraints such as orientation)
  • Cone
  • Cylinder
  • Sphere
  • Line
  • Circle
  • ...

7.Registration

Iterative Closest Point 
 ICP iteratively revises the transformation (translation, rotation) needed to minimize the distance between the points of two raw scans.
 Inputs: points from two raw scans, initial estimation of the transformation, criteria for stopping the iteration.
 Output: refined transformation.
 The algorithm steps are :
  1. Associate points by the nearest neighbor criteria.
  2. Estimate transformation parameters using a mean square cost function.
  3. Transform the points using the estimated parameters.
  4. Iterate (re-associate the points and so on).

官方例程







<think>首先,用户的问题是:“我想学习3D点云技术的基础知识 请问3D点云技术入门 学习路径 基础教程”。这是一个关于入门3D点云技术的请求。 我需要根据系统级指令来构建我的回答: - 所有行内数学表达式必须使用$...$格式。 - 独立公式必须使用$$...$$$$格式并单独成段。 - LaTeX语法正确。 - 使用中文回答。 - 生成相关问题。 - 在回答中引用的段落末尾自然地添加引用标识,例如[^1]。 - 回答结构清晰,帮助用户逐步解决问题。 - 参考站内引用:[^1], [^2], [^3]。 站内引用提供了一些信息: - [^1]:关于点云开发,包括使用PointNet进行分类和深度学习框架。 - [^2]:使用Open3D的Python代码示例,加载点云并进行体素化。 - [^3]:关于合并点云的方法。 用户的问题是关于入门学习路径的,所以我应该提供一个结构化的学习计划,涵盖基础知识。 我的回答结构应该清晰: 1. **介绍3D点云技术**:简要解释什么是点云,为什么重要。 2. **学习路径**:逐步指导入门,包括基础概念、工具、实践。 3. **基础教程**:推荐一些资源或示例。 4. **生成相关问题**:在末尾添加相关问题。 由于用户提到了“基础教程”,我可以引用提供的站内引用作为资源。例如,[^2]有Open3D的代码示例,[^1]提到PointNet。 在回答中,我需要自然地添加引用标识。例如,如果提到点云分类,可以引用[^1]。 数学表达式:用户的问题不直接涉及数学,但如果有机会,我可以加入一些。例如,点云处理可能涉及几何变换,如旋转矩阵:$R = \begin{bmatrix} \cos\theta & -\sin\theta \\ \sin\theta & \cos\theta \end{bmatrix}$。但在基础入门中,可能不需要太多数学,除非必要。 生成相关问题:在末尾添加几个相关问题,如“如何选择点云处理工具?”或“点云数据有哪些常见应用?”。 完整回答框架: - **开头**:欢迎用户,简要介绍点云技术。 - **学习路径**: - 步骤1:了解点云基础(定义、应用)。 - 步骤2:学习点云获取(传感器如LiDAR)。 - 步骤3:掌握点云处理工具(如PCL, Open3D)。 - 步骤4:实践基本操作(加载、可视化、滤波)。 - 步骤5:进阶学习(特征提取、分类、深度学习)。 - **基础教程**:提供简单示例,如使用Open3D加载点云(参考[^2])。 - **资源推荐**:基于引用,推荐学习材料。 - **结尾**:鼓励实践,添加相关问题。 确保引用自然:例如,“点云分类可以使用PointNet等深度学习模型[^1]。”或“在Open3D中,加载点云很简单[^2]。” 生成相关问题: 1. 点云数据如何获取? 2. 点云处理有哪些常用算法? 3. 如何将点云应用于实际项目? 最后,使用中文回答。</think>### 3D点云技术入门学习路径与基础教程 欢迎学习3D点云技术!点云是一种表示三维物体表面点的集合数据(每个点包含坐标和属性,如颜色或法向量),广泛应用于自动驾驶、机器人导航、三维重建等领域[^1]。以下是一个结构化的学习路径,从零基础开始,逐步深入。我会基于可靠资源(包括站内引用)提供教程建议,确保内容真实可靠。学习路径分为五个步骤,每个步骤包含核心概念、实践建议和基础教程。 #### 步骤1: 理解点云基础概念(1-2周) - **核心概念**:点云是三维空间中离散点的集合,通常由LiDAR或深度相机获取。关键术语包括点密度、噪声、法向量(表示点表面方向)和坐标系(如笛卡尔坐标系)。数学上,一个点云可表示为集合 $P = \{p_i | p_i = (x_i, y_i, z_i, \text{attributes})\}$,其中每个点 $p_i$ 包含位置和属性。 - **实践建议**:阅读入门资料,了解点云在真实世界的应用(如自动驾驶中的障碍物检测)。 - **基础教程**: - 推荐资源:阅读“点云开发:从入门到精通的全面教程”[^1],它覆盖了点云的定义和基础处理流程。 - 动手练习:无代码,仅通过可视化工具(如MeshLab)观察点云数据,理解点云结构。 #### 步骤2: 掌握点云处理工具(2-3周) - **核心概念**:学习常用开源库,如Open3D(Python友好)或PCL(C++为主)。这些工具支持点云加载、滤波(如降噪)和可视化。例如,点云滤波常用高斯滤波算法,数学上基于卷积:$G(x,y,z) = \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{x^2+y^2+z^2}{2\sigma^2}}$,其中 $\sigma$ 是标准差。 - **实践建议**:安装Python环境(推荐Anaconda),并配置Open3D库。 - **基础教程**(基于引用[^2]): - 示例代码:加载点云并进行体素化(简化点云)。以下代码来自站内引用[^2],演示基础操作: ```python import open3d as o3d import numpy as np # 加载点云 print("->正在加载点云...") pcd = o3d.io.read_point_cloud("bunny.ply") # 使用示例数据集 print("原始点云:", pcd) # 体素化点云(降采样) print('执行体素化点云') voxel_grid = o3d.geometry.VoxelGrid.create_from_point_cloud(pcd, voxel_size=0.005) print("正在可视化体素...") o3d.visualization.draw_geometries([voxel_grid]) # 可视化结果 ``` - 操作指南:运行代码(需下载点云数据集,如Stanford Bunny),观察体素化效果。体素化将点云划分为小立方体,减少数据量,便于后续处理。 #### 步骤3: 学习点云基本操作(3-4周) - **核心概念**:点云操作包括滤波(去除噪声)、配准(对齐多个点云)和分割(分离不同对象)。配准常用ICP(Iterative Closest Point)算法,优化目标是最小化点对距离:$$\min_{R,t} \sum \|Rp_i + t - q_i\|^2$$,其中 $R$ 是旋转矩阵,$t$ 是平移向量。 - **实践建议**:从简单操作开始,如使用Open3D实现点云滤波(例如统计滤波)。 - **基础教程**: - 推荐资源:参考站内引用[^3],学习点云合并技术。例如,合并不同字段的点云(如位置和颜色)时,需创建新点云类型并复制数据。 - 动手练习:扩展步骤2的代码,添加滤波操作: ```python # 添加统计滤波(去除离群点) print("执行统计滤波...") cl, ind = pcd.remove_statistical_outlier(nb_neighbors=20, std_ratio=2.0) filtered_pcd = pcd.select_by_index(ind) o3d.visualization.draw_geometries([filtered_pcd]) ``` #### 步骤4: 进阶到特征提取与深度学习(4-6周) - **核心概念**:点云特征包括局部描述符(如FPFH)和全局特征。深度学习模型(如PointNet)可直接处理点云,实现分类或分割。PointNet使用对称函数处理无序点集,数学表示为 $f(\{x_i\}) = g(h(x_i))$,其中 $h$ 是逐点MLP,$g$ 是池化函数[^1]。 - **实践建议**:结合TensorFlow或PyTorch框架,复现简单模型。 - **基础教程**: - 推荐资源:站内引用[^1]详细介绍了PointNet用于点云分类的端到端流程。可从开源项目(如GitHub上的PointNet实现)入手。 - 动手练习:使用预训练PointNet模型(例如在Model Zoo下载)对点云进行分类。 #### 步骤5: 项目实践与整合(持续) - **核心概念**:整合所学,构建完整应用,如三维重建或目标检测。注意点云数据的挑战(如噪声和密度变化)。 - **实践建议**:参与Kaggle点云竞赛或开源项目。 - **基础教程**:尝试小型项目,例如:使用Open3D实现点云配准和可视化,参考官方文档和引用[^2][^3]。 ### 学习资源总结 - **免费资源**:Open3D官方教程(Python版)、PCL文档。 - **付费资源**:Udemy课程“3D Point Cloud Processing with Python”。 - **站内引用利用**:引用[^1]提供深度学习框架指南,引用[^2]给出Open3D代码范例,引用[^3]覆盖点云合并技巧。建议优先阅读这些资料。 学习点云技术需要理论与实践结合:从基础概念开始,逐步过渡到代码实践。每天投入1-2小时,2-3个月可达入门水平。遇到问题,多查阅文档和社区(如Stack Overflow)。保持动手实践是关键!
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值