[特殊字符] LangChain Beginner Tutorial – Build Powerful LLM Apps with Ease

📘 Introduction

LangChain is a powerful framework designed to simplify the creation of applications powered by large language models (LLMs). With LangChain, you can integrate LLMs into tools, memory, agents, and external data sources like APIs or databases—all with minimal code.

In this tutorial, we’ll walk through the basics of LangChain and build a simple example app.


📦 1. Installation

Make sure you have Python 3.8+ installed.

pip install langchain openai

To use OpenAI models:

export OPENAI_API_KEY="your-api-key"

🧠 2. Key Concepts

LangChain provides modular components:

ComponentDescription
LLMsInterfaces to models like OpenAI, Anthropic, etc.
ChainsCombine LLMs and tools to form a workflow.
PromptsTemplates for generating effective inputs to LLMs.
MemoryMaintain state across calls.
AgentsDynamic decision-making systems that choose tools.
ToolsFunctions the agent can call (e.g., search, calculator).

✍️ 3. Your First Chain

Let’s build a simple prompt chain using OpenAI’s gpt-3.5-turbo.

✅ Prompt + LLM Chain

from langchain.chat_models import ChatOpenAI
from langchain.chains import LLMChain
from langchain.prompts import PromptTemplate

llm = ChatOpenAI(temperature=0.7)

prompt = PromptTemplate(
    input_variables=["product"],
    template="What is a good name for a company that makes {product}?"
)

chain = LLMChain(llm=llm, prompt=prompt)

response = chain.run("smart home devices")
print(response)

🧰 4. Using Tools with Agents

Want to search the web, do math, or fetch data dynamically?

from langchain.agents import initialize_agent, load_tools
from langchain.agents.agent_types import AgentType

llm = ChatOpenAI(temperature=0)

tools = load_tools(["serpapi", "llm-math"], llm=llm)

agent = initialize_agent(
    tools, llm, agent=AgentType.ZERO_SHOT_REACT_DESCRIPTION, verbose=True
)

response = agent.run("Who is the president of France and what is 3.4 times his age?")
print(response)

🔑 Requires SERPAPI_API_KEY for search tool.


🧠 5. Add Memory to a ChatBot

Memory keeps the conversation state.

from langchain.chains import ConversationChain
from langchain.memory import ConversationBufferMemory

memory = ConversationBufferMemory()
llm = ChatOpenAI()

conversation = ConversationChain(llm=llm, memory=memory, verbose=True)

conversation.predict(input="Hi, my name is Alice.")
conversation.predict(input="What’s my name?")

📄 6. Read Documents with LangChain

Read and query local text or PDF files:

from langchain.document_loaders import TextLoader
from langchain.indexes import VectorstoreIndexCreator

loader = TextLoader("example.txt")
index = VectorstoreIndexCreator().from_loaders([loader])

query = index.query("What is the main topic of this document?")
print(query)

For PDF support, install:

pip install pypdf

🛠 7. Useful Integrations

LangChain works with:

  • Vector databases: FAISS, Chroma, Pinecone
  • Embeddings: OpenAI, Hugging Face
  • Tools: Google Search, Wolfram Alpha
  • UI: Streamlit, Gradio, LangServe

💡 8. Project Ideas

  • AI blog assistant (summarize + rewrite articles)
  • Document Q&A system
  • Conversational agent with tools and memory
  • LLM-powered email responder

🚀 9. Next Steps

  • Read the LangChain docs
  • Try LangChainHub: community-shared chains & agents
  • Deploy with FastAPI + Streamlit
  • Combine with Vector DBs like Pinecone or Chroma for RAG (retrieval-augmented generation)

🏁 Summary

LangChain is the fastest way to build intelligent, interactive LLM applications. With just a few lines of code, you can:

  • Prompt models effectively
  • Chain multiple steps
  • Add memory and reasoning
  • Use tools and data

Start simple, iterate fast, and unlock the real power of large language models!

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值