梯度下降算法以及随机梯度下降算法的原理及python代码

本文介绍了梯度下降算法的基本原理,通过一元函数的例子阐述了如何利用梯度更新权重以逼近目标函数。还讨论了梯度下降可能陷入局部最优解的问题,并提出随机梯度下降作为解决方案。文章最后提供了两种算法的Python代码实现。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

梯度下降算法 

梯度下降,依照所给数据,判断函数,随机给一个初值w,之后通过不断更改,一步步接近原函数的方法。更改的过程也就是根据梯度不断修改w的过程。

以简单的一元函数为例

原始数据为

x_data = [1.0,2.0,3.0]
y_data = [2.0,4.0,6.0]

因此我们设置函数为

对于该函数,我们的w是未知的,因此如何根据xy的数据,获取到正确的w值就是梯度下降的目标。

首先我们要先给定一个随机w值,这个值可以是任何数,我们的算法就会根据我们所计算的cost函数,判断偏离正确数据有多大,之后根据梯度,对w进行更新,直到cost为0,我们也就获取到正确的w值。

cost函数,也就是根据自己的模拟量,算出的结果与原函数所给数据的差值的平方

cost函数的表示为(所求的是N个数据的平均cost)

cost函数对w的求导为

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值