自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(2)
  • 资源 (2)
  • 收藏
  • 关注

原创 Python股票盯盘助手

学习股票交易有一段时间了,还未逃脱盯盘的 初级阶段,索性写了一段微信盯盘脚本,将账户信息实时发送到微信助手中 先导入需要的包 import tushare as ts import itchat, time from itchat.content import TEXT import datetime 登陆微信 itchat.logout() itchat.auto_login(hotR...

2018-11-01 18:32:23 6144 1

原创 自然语言处理之文本主题判别

问题发现:本次案例为工作中遇到的实际问题,在语音识别中的语料准备部分,需要从网络中爬取相当数量的相关文本,其中发现爬取到了一些不相关的内容,如何把这些不相关的内容剔除掉成为笔者需要思考的问题。初步思考:遇到此问题笔者第一时间考虑是将文本分词后向量化,使用聚类看一下分布情况,然而发现在不同训练集中,训练样本变化时,向量随之变化,在测试集中表现一般,在实测中几乎无用。于是想到向量化的方法问题,使用sk...

2018-06-25 15:46:18 3588

Python盯盘小助手

学习股票交易有一段时间了,还未逃脱盯盘的 初级阶段,索性写了一段微信盯盘脚本,将账户信息实时发送到微信助手中

2018-11-01

自然语言处理之文本主题判别

问题发现: 本次案例为工作中遇到的实际问题,在语音识别中的语料准备部分,需要从网络中爬取相当数量的相关文本,其中发现爬取到了一些不相关的内容,如何把这些不相关的内容剔除掉成为笔者需要思考的问题。 初步思考: 遇到此问题笔者第一时间考虑是将文本分词后向量化,使用聚类看一下分布情况,然而发现在不同训练集中,训练样本变化时,向量随之变化,在测试集中表现一般,在实测中几乎无用。于是想到向量化的方法问题,使用sklearn CountVectorizer方法进行向量化,仅仅是将所有词频无序的向量化,看到另外博文时,发现应该先将目标主题的文本进行词频统计,将统计结果当做向量化模板,实测发现效果不错,现将此方法分享给大家

2018-06-25

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除