http://poj.org/problem?id=2112
题意为n个奶牛站,m头奶牛,每个奶牛站的奶牛上限k;给出奶牛站和奶牛对其他实体的距离,距离为0即为两个实体无路径,求出所有奶牛到奶牛站中走的最远的奶牛的最远距离的最小值
最大中的最小问题,可以二分。我们先用Floyd处理出实体到实体之间的最近距离,二分这个最远距离,建图(两实体距离小于等于二分值时才连边)后跑出最大流量判断是否为奶牛的数量
#include <iostream>
#include <cstdlib>
#include <algorithm>
#include <cstring>
#include <vector>
#include <cstdio>
#include <queue>
using namespace std;
const int maxn = 300;
const int inf = 0x3f3f3f3f;
int path[maxn][maxn];
struct Edge {
int from, to, cap, flow;
Edge(int u, int v, int c, int f) : from(u), to(v), cap(c), flow(f) {}
};
struct Dinic{
int n, m, s, t;
vector<Edge> edges;
vector<int> g[maxn];
bool vis[maxn];
int d[maxn];
int cur[maxn];
void init(int n){
this->n = n;
for(int i = 0; i < n; i++) g[i].clear();
edges.clear();
}
void AddEdge(int from, int to, int cap){
edges.push_back(Edge(from, to, cap, 0));
edges.push_back(Edge(to, from, 0, 0));
m = edges.size();
g[from].push_back(m - 2);
g[to].push_back(m - 1);
}
bool Bfs(){
memset(vis, 0, sizeof(vis));
queue<int> q;
q.push(s);
d[s] = 0;
vis[s] = 1;
while(!q.empty()){
int x = q.front(); q.pop();
for(int i = 0; i < (int)g[x].size(); i++){
Edge &e = edges[g[x][i]];
if(!vis[e.to] && e.cap > e.flow){
vis[e.to] = 1;
d[e.to] = d[x] + 1;
q.push(e.to);
}
}
}
return vis[t];
}
int Dfs(int x, int a){
if(x == t || a == 0) return a;
int flow = 0, f;
for(int& i = cur[x]; i < (int)g[x].size(); i++){
Edge &e = edges[g[x][i]];
if(d[x] + 1 == d[e.to] && (f = Dfs(e.to, min(a, e.cap - e.flow))) > 0){
e.flow += f;
edges[g[x][i]^1].flow -= f;
flow += f;
a -= f;
if(a == 0) break;
}
}
return flow;
}
int Maxflow(int s, int t){
this->s = s; this->t = t;
int flow = 0;
while(Bfs()){
memset(cur, 0, sizeof(cur));
flow += Dfs(s, inf);
}
return flow;
}
} dinic;
int n, m, k;
void floyd() {
for(int q = 1; q <= n + m; ++q) {
for(int i = 1; i <= n + m; ++i) {
if(path[i][q] == inf) continue;
for(int j = 1; j <= n + m; ++j) {
if(path[q][j] == inf) continue;
path[i][j] = min(path[i][j], path[i][q] + path[q][j]);
}
}
}
}
bool solve(int x) {
dinic.init(n + m + 2);
for(int i = 1; i <= n; ++i) {
dinic.AddEdge(0, i, k);
for(int j = n + 1; j <= n + m; ++j) {
if(path[i][j] <= x) dinic.AddEdge(i, j, 1);
}
}
for(int i = n + 1; i <= n + m; ++i) dinic.AddEdge(i, n + m + 1, 1);
return dinic.Maxflow(0, n + m + 1) == m;
}
int main()
{
ios::sync_with_stdio(false);
cin.tie(0);
while(cin >> n >> m >> k) {
for(int i = 1; i <= n + m; ++i) {
for(int j = 1; j <= n + m; ++j) {
cin >> path[i][j];
if(path[i][j] == 0) path[i][j] = inf;
}
}
floyd();
int l = 0, r = 1000000;
while(l < r) {
int mid = l + r >> 1;
if(solve(mid)) r = mid;
else l = mid + 1;
}
cout << l << endl;
}
}