Paper reading: Human-level control through deep reinforcement learning

在接近现实世界复杂度的情境中成功应用强化学习,智能体需从高维感官输入中推导环境的有效表示。文章提出使用深度Q网络(DQN),结合强化学习与深度神经网络。还分析了强化学习不稳定的原因,并给出经验回放和迭代更新的解决办法。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

提出问题:

To use reinforcement learning successfully insituations approaching real-world complexity, however, agents are confronted with a difficult task: theymust derive efficient representations of the environment from high-dimensional sensory inputs, and use these to generalize past experience tonewsituations.

模型:

a deep Q-network(DQN)

    combine RL with deep neural networks --- learn concepts such as object categories directly from raw sensory data

    use deep CNN to approximate the optimal action-value function

RL 不稳定性的原因:

  • 观察序列之间存在相关性(数据不独立)
  • Q函数有一个small update时,可能导致policy有很大的变化
  • Q值与目标值

solution:

  •  Experience replay:randomizes over the data,removing correlations in the observation sequence and smoothing over changes in the data distribution
  • An iterative update that adjusts the action-values (Q) towards target values that are only periodically updated, thereby reducing correlations with the target
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值