hash算法
- 哈希算法将任意长度的二进制值映射为较短的固定长度的二进制值,这个小的二进制值称为哈希值。哈希值是一段数据唯一且极其紧凑的数值表示形式。
普通的hash算法在分布式应用中的不足
- 比如,在分布式的存储系统中,要将数据存储到具体的节点上,如果我们采用普通的hash算法进行路由,将数据映射到具体的节点上,如key%N,key是数据的key,N是机器节点数,如果有一个机器加入或退出这个集群,则所有的数据映射都无效了,如果是持久化存储则要做数据迁移,如果是分布式缓存,则其他缓存就失效了。
一致性hash算法
- 按照常用的hash算法来将对应的key哈希到一个具有2^32次方个节点的空间中,即0 ~ (2^32)-1的数字空间中。现在我们可以将这些数字头尾相连,想象成一个闭合的环形。
- 节点的个数可以自定义,整个hash环我们可以用TreeMap来实现,因为treeMap是排序的,我们刚好可以利用上。
- 将各个服务器使用Hash进行一个哈希,具体可以选择服务器的ip或唯一主机名作为关键字进行哈希,这样每台机器就能确定其在哈希环上的位置。假设我们将四台服务器使用ip地址哈希后在环空间的位置如下:
- 现在我们将objectA、objectB、objectC、objectD四个对象通过特定的Hash函数计算出对应的key值,然后散列到Hash环上,然后从数据所在位置沿环顺时针“行走”,第一台遇到的服务器就是其应该定位到的服务器。
- 此时NodeC宕机了,此时Object A、B、D不会受到影响,只有Object C会重新分配到Node D上面去,而其他数据对象不会发生变化
- 如果在环境中新增一台服务器Node X,通过hash算法将Node X映射到环中,通过按顺时针迁移的规则,那么Object C被迁移到了Node X中,其它对象还保持这原有的存储位置。通过对节点的添加和删除的分析,一致性哈希算法在保持了单调性的同时,还是数据的迁移达到了最小,这样的算法对分布式集群来说是非常合适的,避免了大量数据迁移,减小了服务器的的压力。
虚拟节点
- 到目前为止一致性hash也可以算做完成了,但是有一个问题还需要解决,那就是平衡性。从下图我们可以看出,当服务器节点比较少的时候,会出现一个问题,就是此时必然造成大量数据集中到一个节点上面,极少数数据集中到另外的节点上面。
- 为了解决这种数据倾斜问题,一致性哈希算法引入了虚拟节点机制,即对每一个服务节点计算多个哈希,每个计算结果位置都放置一个此服务节点,称为虚拟节点。具体做法可以先确定每个物理节点关联的虚拟节点数量,然后在ip或者主机名后面增加编号。例如上面的情况,可以为每台服务器计算三个虚拟节点,于是可以分别计算 “Node A#1”、“Node A#2”、“Node A#3”、“Node B#1”、“Node B#2”、“Node B#3”的哈希值,于是形成六个虚拟节点:
- 同时数据定位算法不变,只是多了一步虚拟节点到实际节点的映射,例如定位到“Node A#1”、“Node A#2”、“Node A#3”三个虚拟节点的数据均定位到Node A上。这样就解决了服务节点少时数据倾斜的问题。每个物理节点关联的虚拟节点数量就根据具体的生产环境情况在确定。