Numpy基本知识
1、基本运算
import numpy as np
# 仿照列表排序
A = np.arange(14,2,-1).reshape((3,4)) # -1表示反向递减一个步长
print(A)
'''
[[14 13 12 11]
[10 9 8 7]
[ 6 5 4 3]]
'''
print(np.sort(A))
'''
[[11 12 13 14]
[ 7 8 9 10]
[ 3 4 5 6]]
'''
# 矩阵转置
print(np.transpose(A))\
'''
[[14 10 6]
[13 9 5]
[12 8 4]
[11 7 3]]
'''
clip(Array,Array_min,Array_max)
将Array_min<X<Array_max X表示矩阵A中的数,如果满足上述关系,则原数不变。
否则,如果X<Array_min,则将矩阵中X变为Array_min;
如果X>Array_max,则将矩阵中X变为Array_max.
print(np.clip(A,5,9))
'''
[[9 9 9 9]
[9 9 8 7]
[6 5 5 5]]
'''
累差运算
B = np.array([[3,5,9],
[4,8,10]])
print(np.diff(B))
'''
[[2 4]
[4 2]]
'''
多维转一维
A = np.arange(3,15).reshape((3,4))
# print(A)
print(A.flatten())
# flat是一个迭代器,本身是一个object属性
'''
[ 3 4 5 6 7 8 9 10 11 12 13 14]
'''
for item in A.flat:
print(item)
'''
3
4
5
6
7
8
9
10
11
12
13
14
'''
2、数组合并
import numpy as np
A = np.array([1,1,1])
B = np.array([2,2,2])
print(np.vstack((A,B)))
# vertical stack 上下合并,对括号的两个整体操作。
'''
[[1 1 1]
[2 2 2]]
'''
C = np.vstack((A,B))
print(C)
'''
[[1 1 1]
[2 2 2]]
'''
print(A.shape,B.shape,C.shape)# 从shape中看出A,B均为拥有3项的数组(数列)
'''
(3,) (3,) (2, 3)
'''
# horizontal stack左右合并
D = np.hstack((A,B))
print(D)
'''
[1 1 1 2 2 2]
'''
print(A.shape,B.shape,D.shape)
# (3,) (3,) (6,)
# 对于A,B这种,为数组或数列,无法进行转置,需要借助其他函数进行转置
'''
(3,) (3,) (6,)
'''
3、数组转置为矩阵
print(A[np.newaxis,:]) # [1 1 1]变为[[1 1 1]]
'''
[[1 1 1]]
'''
print(A[np.newaxis,:].shape) # (3,)变为(1, 3)
'''
(1, 3)
'''
print(A[:,np.newaxis])
'''
[[1]
[1]
[1]]
'''
4、多个矩阵合并
A = A[:,np.newaxis] # 数组转为矩阵
B = B[:,np.newaxis] # 数组转为矩阵
print(A)
'''
[[1]
[1]
[1]]
'''
print(B)
'''
[[2]
[2]
[2]]
'''
# axis=0纵向合并
C = np.concatenate((A,B,B,A),axis=0)
print(C)
'''
[[1]
[1]
[1]
[2]
[2]
[2]
[2]
[2]
[2]
[1]
[1]
[1]]
'''
# axis=1横向合并
C = np.concatenate((A,B),axis=1)
print(C)
'''
[[1 2]
[1 2]
[1 2]]
'''
5、array分割
import numpy as np
A = np.arange(12).reshape((3,4))
print(A)
'''
[[ 0 1 2 3]
[ 4 5 6 7]
[ 8 9 10 11]]
'''
等量分割
# 等量分割
# 纵向分割同横向合并的axis
print(np.split(A, 2, axis=1))
'''
[array([[0, 1],
[4, 5],
[8, 9]]), array([[ 2, 3],
[ 6, 7],
[10, 11]])]
'''
# 横向分割同纵向合并的axis
print(np.split(A,3,axis=0))
'''
[array([[0, 1, 2, 3]]), array([[4, 5, 6, 7]]), array([[ 8, 9, 10, 11]])]
'''
不等量分割
print(np.array_split(A,3,axis=1))
'''
[array([[0, 1],
[4, 5],
[8, 9]]), array([[ 2],
[ 6],
[10]]), array([[ 3],
[ 7],
[11]])]
'''
其他的分割方式
# 横向分割
print(np.vsplit(A,3)) # 等价于print(np.split(A,3,axis=0))
'''
[array([[0, 1, 2, 3]]), array([[4, 5, 6, 7]]), array([[ 8, 9, 10, 11]])]
'''
# 纵向分割
print(np.hsplit(A,2)) # 等价于print(np.split(A,2,axis=1))
'''
[array([[0, 1],
[4, 5],
[8, 9]]), array([[ 2, 3],
[ 6, 7],
[10, 11]])]
'''
6、Numpy copy与 =
=赋值方式会带有关联性
import numpy as np
# `=`赋值方式会带有关联性
a = np.arange(4)
print(a) # [0 1 2 3]
b = a
c = a
d = b
a[0] = 11
print(a) # [11 1 2 3]
print(b) # [11 1 2 3]
print(c) # [11 1 2 3]
print(d) # [11 1 2 3]
print(b is a) # True
print(c is a) # True
print(d is a) # True
d[1:3] = [22,33]
print(a) # [11 22 33 3]
print(b) # [11 22 33 3]
print(c) # [11 22 33 3]
copy()赋值方式没有关联性
a = np.arange(4)
print(a) # [0 1 2 3]
b =a.copy() # deep copy
print(b) # [0 1 2 3]
a[3] = 44
print(a) # [ 0 1 2 44]
print(b) # [0 1 2 3]
# 此时a与b已经没有关联