新手总结笔记
1.在ubuntu的软件商店中下载eclipse
2.在官网上下载hadoop-eclipse-plugin-2.6.2.jar , 并把它放到eclipse的安装路径上usr/lib/eclipse/plugins
3.进入eclipse 的Window ---> preference下的Hadoop Map/Reduce, 点击Browse选择出hadoop的根路径
4.设置好后进入Window-->Open Perspective -->Other , 选择Map/Reduce
5.看界面下方位置,选择小象头像,新建New Hadoop Location
6.设置如下,名字随意,开心就好
7.出现如下图及配置成功,不出现可右键,点击Refresh
8.选中input文件右键选中Upload Files To DFS ,选择一个新建的.txt文件,比如file.txt,在其中可随意写一些单词
9.基本配置完成,接下来是WordCount ,File-->New-->Project-->Map/Reduce Project
10.新建项目写入 wordcount代码
代码如下:
import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.Mapper;
import org.apache.hadoop.mapreduce.Reducer;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;
import org.apache.hadoop.util.GenericOptionsParser;
import java.io.IOException;
import java.nio.file.FileSystem;
import java.util.StringTokenizer;
@SuppressWarnings("deprecation")
public class wordcount {
//在map阶段接收输入的<key, value>(key是当前输入的行号,value是对应的内容),
//然后对内容进行切词,每切下一个词就将其组织成<word,1>的形式输出(输出即写到context中)
//设置map的输入类型为<Object, Text>
//输出类型为<Text, IntWritable>
public static class TokenizerMapper extends Mapper<Object, Text, Text, IntWritable> {
//one表示单词出现1次
private final static IntWritable one = new IntWritable(1);
//word存储切下的单词
private Text word = new Text();
@Override
public void map(Object key, Text value, Context context) throws IOException, InterruptedException {
//参数key表示的是行号,下面并没有用到key
StringTokenizer itr = new StringTokenizer(value.toString()); //对输入的行进行切词
while (itr.hasMoreTokens()) { //切下单词,存入word
word.set(itr.nextToken());
context.write(word, one);
}
}
}
//Reducer是对相同key下的所有value进行处理.
//在reduce阶段,TaskTracker会接收到<word,{1,1,1,1}>形式的数据,也就是特定单词出现次数的情况
//设置reduce的输入数据类型为<Text, IntWritable>
//输出数据类型为<Text, IntWritable>
public static class IntSumReducer extends Reducer<Text, IntWritable, Text, IntWritable> {
//result记录单词的个数
private IntWritable result = new IntWritable();
@Override
public void reduce(Text key, Iterable<IntWritable> values, Context context) throws IOException, InterruptedException {
int sum = 0;
//对获取的<key, value-list>计算value的和
for (IntWritable val : values) {
sum += val.get();
}
//将频数设置到result中
result.set(sum);
//收集结果
context.write(key, result);
}
}
public static void main(String[] args) throws Exception {
Configuration conf = new Configuration();
String[] otherArgs = new GenericOptionsParser(conf, args)
.getRemainingArgs();
if (otherArgs.length != 2) {
System.err.println("Usage: wordcount <in> <out>");
System.exit(2);
}
//配置作业名
Job job = new Job(conf, "word count");
//配置作业各个类
job.setJarByClass(wordcount.class);
job.setMapperClass(TokenizerMapper.class);
job.setCombinerClass(IntSumReducer.class);
job.setReducerClass(IntSumReducer.class);
job.setOutputKeyClass(Text.class);
job.setOutputValueClass(IntWritable.class);
Path path = new Path(otherArgs[1]);// 取第1个表示输出目录参数(第0个参数是输入目录)
org.apache.hadoop.fs.FileSystem fileSystem = path.getFileSystem(conf);// 根据path找到这个文件
if (fileSystem.exists(path)) {
fileSystem.delete(path, true);// true的意思是,就算output有东西,也一带删除
}
FileInputFormat.addInputPath(job, new Path(otherArgs[0]));
FileOutputFormat.setOutputPath(job, new Path(otherArgs[1]));
System.exit(job.waitForCompletion(true) ? 0 : 1);
}
}
**附加** ** ********
:配置日志文件
:配置日志文件
(1) 选择 Other
(2)新建file文件,取名log4j.properties
(3)log4j.properties文件
(4)代码如是
log4j.rootCategory=INFO, stdout , R
log4j.appender.stdout=org.apache.log4j.ConsoleAppender
log4j.appender.stdout.layout=org.apache.log4j.PatternLayout
log4j.appender.stdout.layout.ConversionPattern=[QC] %p [%t] %C.%M(%L) | %m%n
log4j.appender.R=org.apache.log4j.DailyRollingFileAppender
log4j.appender.R.File=D:\\Tomcat 5.5\\logs\\qc.log
log4j.appender.R.layout=org.apache.log4j.PatternLayout
1log4j.appender.R.layout.ConversionPattern=%d-[TS] %p %t %c - %m%n
log4j.logger.com.neusoft=DEBUG
log4j.logger.com.opensymphony.oscache=ERROR
log4j.logger.net.sf.navigator=ERROR
log4j.logger.org.apache.commons=ERROR
log4j.logger.org.apache.struts=WARN
log4j.logger.org.displaytag=ERROR
log4j.logger.org.springframework=DEBUG
log4j.logger.com.ibatis.db=WARN
log4j.logger.org.apache.velocity=FATAL
log4j.logger.com.canoo.webtest=WARN
log4j.logger.org.hibernate.ps.PreparedStatementCache=WARN
log4j.logger.org.hibernate=DEBUG
log4j.logger.org.logicalcobwebs=WARN
log4j.rootCategory=INFO, stdout , R
log4j.appender.stdout=org.apache.log4j.ConsoleAppender
log4j.appender.stdout.layout=org.apache.log4j.PatternLayout
log4j.appender.stdout.layout.ConversionPattern=[QC] %p [%t] %C.%M(%L) | %m%n
log4j.appender.R=org.apache.log4j.DailyRollingFileAppender
log4j.appender.R.File=D:\\Tomcat 5.5\\logs\\qc.log
log4j.appender.R.layout=org.apache.log4j.PatternLayout
1log4j.appender.R.layout.ConversionPattern=%d-[TS] %p %t %c - %m%n
log4j.logger.com.neusoft=DEBUG
log4j.logger.com.opensymphony.oscache=ERROR
log4j.logger.net.sf.navigator=ERROR
log4j.logger.org.apache.commons=ERROR
log4j.logger.org.apache.struts=WARN
log4j.logger.org.displaytag=ERROR
log4j.logger.org.springframework=DEBUG
log4j.logger.com.ibatis.db=WARN
log4j.logger.org.apache.velocity=FATAL
log4j.logger.com.canoo.webtest=WARN
log4j.logger.org.hibernate.ps.PreparedStatementCache=WARN
log4j.logger.org.hibernate=DEBUG
log4j.logger.org.logicalcobwebs=WARN
******************************************************************************************************
11.完成后,进行环境设置,右键java文件Run as 选择最后一项
12.点击Arguments,配置输入口和输出口
13.完成后点击RUN
顺利完成,顺利初识Big Data,第一次写博客,错误希望大家指出来,一起进步!