题目描述
Given a binary tree, check whether it is a mirror of itself (ie, symmetric around its center).
For example, this binary tree is symmetric:
1 / \ 2 2 / \ / \ 3 4 4 3
But the following is not:
1 / \ 2 2 \ \ 3 3
Note:
Bonus points if you could solve it both recursively and iteratively.
confused what"{1,#,2,3}"means? > read more on how binary tree is serialized on OJ.
OJ's Binary Tree Serialization:
The serialization of a binary tree follows a level order traversal, where '#' signifies a path terminator where no node exists below.
Here's an example:
1 / \ 2 3 / 4 \ 5The above binary tree is serialized as"{1,2,3,#,#,4,#,#,5}".
/**
* Definition for binary tree
* struct TreeNode {
* int val;
* TreeNode *left;
* TreeNode *right;
* TreeNode(int x) : val(x), left(NULL), right(NULL) {}
* };
*/
class Solution {
public:
bool isSymmetric(TreeNode *root) {
if(root==NULL) return true;
stack<TreeNode*> s1,s2;
s1.push(root->left);
s2.push(root->right);
while(!s1.empty()&&!s2.empty())
{
TreeNode* n1 = s1.top();
s1.pop();
TreeNode* n2 = s2.top();
s2.pop();
if (n1 == NULL && n2 == NULL)
continue;
if (n1 == NULL || n2 == NULL)
return false;
if (n1->val != n2->val)
return false;
s1.push(n1->left); //s1,s2压入左右子树的顺序相反!!!
s2.push(n2->right);
s1.push(n1->right);
s2.push(n2->left);
}
return true;
}
};