算法基础
排序
快速排序
把每个比基准值大的值放到右边,比基准值小的值放到左边,再分别左右快速排序
void quick_sort(int q[], int l, int r) {
if (l >= r) return;
int x = q[l], i = l - 1, j = r + 1; //这里基准点l必须上取整,不然会死循环
int x = q[l + r >> 1], i = l - 1, j = r + 1; //似乎比上一行的写法更快,快速排序最坏情况是 O(n2),上一行更容易导致接近最坏情况
// 假如是 1,2 进行快速排序,会出现排序一次后,左边界是 [0,-1], 右边是[0,2],会一直死循环
while (i < j) {
do i++; while (q[i] < x);
do j--; while (q[j] > x);
if (i < j) swap(q[i], q[j]);
}
quick_sort(q, l, j);
quick_sort(q, j + 1, r);
}
归并排序
- 确定分界点 mid = (l + r) / 2
- 归并排序 left right
- 归并 - 合二为一
const int N = 1000010;
int n;
int q[N], tem[N];
void merge_sort(int q[], int l, int r) {
if (l >= r) return;
int mid = l + r >> 1; // >> 运算符 优先程度和 + 相同
merge_sort(q, l, mid);
merge_sort(q, mid + 1, r);
int k = 0, i = 1, j = mid + 1;
while (i <= mid && j <= r)
if (q[i] <= q[j]) tmp[k ++] = q[i ++];
else tem[k ++] = q[j ++];
while (i <= mid) tem[k ++] = q[i ++];
while (j <= r) tem[k ++] = q[j ++];
for (int i = l, j = 0; i <= r; i ++, j ++) q[i] = tem[j];
}
二分查找
int bsearch_1(int l, int r) {
while (l < r) {
int mid = l + r >> 1;
if (check(mid)) r = mid; //判断mid是否满足某种性质
else l = mid + 1;
}
return l;
}
int bsearch_2(int l, int r) {
while (l < r) {
int mid = l + r + 1 >> 1; //除法是下取整,如果不加1 且 l = r - 1,那么区间[l, r]会变成区间[l, r]会进入死循环,因为 mid = l + r >> 1 = l + 1 + l >> 1 = l。所以当 l = mid 时,需要补偿 1
if (check(mid)) l = mid; // l = mid 的话需要 + 1
else r = mid - 1;
}
return l;
}
高精度
使用数组存储高精度数字的时候,例如 12345 保存成 54321,可以实现高位对齐
加法
先逆序存储数字,然后计算加法,如果末尾有进位,则补1
#include <iostream>
#include <vector>
using namespace std;
const int N = 1e6 + 10;
vector<int> add(vector<int> & A, vector<int> & B) {
vector<int> c;
int t = 0; // 进位
for (int i = 0; i < A.size() || i < B.size(); ++i) {
if (i < A.size()) t += A[i];
if (i < B.size()) t += B[i];
c.push_back(t % 10);
t /= 10;
}
if (t > 0) c.push_back(1);
return c;
}
int main () {
string a, b;
vector<int> A, B;
cin >> a >> b;
// 存入逆序的大数字
for (int i = a.size() - 1; i >= 0; --i) A.push_back(a[i] - '0');
for (int i = b.size() - 1; i >= 0; --i) B.push_back(b[i] - '0');
auto c = add(A, B);
for (int i = c.size() - 1; i >= 0; --i) printf("%d", c[i]);
return 0;
}
减法
Ai - Bi - t >= 0,直接减,否则 10 + Ai - Bi - t
如果 小的减去大的,反过来求减法
#include <iostream>
#include <vector>
using namespace std;
const int N = 1e6 + 10;
// 判断 A是否大于B
bool cmp(vector<int> &A, vector<int> & B) {
if (A.size() != B.size()) return A.size() > B.size();
for (int i = A.size() - 1; i >= 0; --i)
if (A[i] != B[i]) return A[i] > B[i];
return true;
}
vector<int> sub(vector<int> & A, vector<int> & B) {
vector<int> c;
for (int i = 0, t = 0; i < A.size(); ++i) {
t = A[i] - t;
if (i < B.size()) t -= B[i];
c.push_back((t + 10) % 10); //直接把借位和不借位的情况合二为一
if (t < 0) t = 1;
else t = 0;
}
while (c.size() > 1 && c.back() == 0) c.pop_back(); //把0004 这种结果的前面的0都去除
return c;
}
int main () {
string a, b;
vector<int> A, B;
cin >> a >> b;
// 存入逆序的大数字
for (int i = a.size() - 1; i >= 0; --i) A.push_back(a[i] - '0');
for (int i = b.size() - 1; i >= 0; --i) B.push_back(b[i] - '0');
if (cmp(A, B)) {
auto c = sub(A, B);
for (int i = c.size() - 1; i >= 0; --i) printf("%d", c[i]);
} else {
auto c = sub(B, A);
printf("%c", '-');
for (int i = c.size() - 1; i >= 0; --i) printf("%d", c[i]);
}
return 0;
}
乘法
#include <iostream>
#include <vector>
using namespace std;
const int N = 1e6 + 10;
vector<int> mul(vector<int> &A, int b) {
vector<int> c;
int t = 0;
for (int i = 0; i < A.size(); ++i) {
t += A[i] * b; // 把小的数b当作一个整体相乘
c.push_back(t % 10);
t /= 10;
}
if (t > 0) c.push_back(t);
while (c.size() > 1 && c.back() == 0) c.pop_back(); // 去除末尾的00001
return c;
}
int main () {
string a;
int b; // 大a 小b
vector<int> A;
cin >> a >> b;
// 存入逆序的大数字
for (int i = a.size() - 1; i >= 0; --i) A.push_back(a[i] - '0');
auto c = mul(A, b);
for (int i = c.size() - 1; i >= 0; --i) printf("%d", c[i]);
return 0;
}
除法
#include <iostream>
#include <vector>
#include <algorithm>
using namespace std;
const int N = 1e6 + 10;
vector<int> div(vector<int> &A, int b, int &r) {
vector<int> c;
r = 0;
for (int i = A.size() - 1; i >= 0; --i) {
r = r * 10 + A[i];
c.push_back(r / b);
r %= b;
}
reverse(c.begin(), c.end());
while (c.size() > 1 && c.back() == 0) c.pop_back(); // 去除末尾的00001
return c;
}
int main () {
string a;
int b; // 大a 小b
vector<int> A;
cin >> a >> b;
// 存入逆序的大数字
for (int i = a.size() - 1; i >= 0; --i) A.push_back(a[i] - '0');
int r;
auto c = div(A, b, r);
for (int i = c.size() - 1; i >= 0; --i) printf("%d", c[i]);
cout << endl << r << endl;
return 0;
}
前缀和和差分
前缀和
二维前缀和 思路类似。
#include <iostream>
using namespace std;
const int N = 100010;
int n, m;
int a[N], s[N];
int main() {
scanf("%d%d", &n, &m);
for (int i = 1; i <= n; ++i) scanf("%d", &a[i]);
for (int i = 1; i <= n; ++i) s[i] = s[i - 1] + a[i];
while (m--) {
int l, r;
scanf("%d%d", &l, & r);
printf("%d\n", s[r] - s[l - 1]);
}
}
差分
#include <iostream>
using namespace std;
const int N = 100010;
int n, m;
int a[N], b[N];
void insert(int l, int r, int c) {
b[l] += c;
b[r + 1] -= c;
}
int main() {
scanf("%d%d", &n, &m);
for (int i = 1; i <= n; ++i) scanf("%d", &a[i]);
for (int i = 1; i <= n; ++i) insert(i, i, a[i]);
while (m--) {
int l, r, c;
scanf("%d%d%d", &l, &r, &c);
insert(l, r, c);
}
for (int i = 1; i <= n; ++i) b[i] += b[i - 1]; // 差分 求和就是原数组
for (int i = 1; i <= n; ++i) printf("%d ", b[i]);
return 0;
}
二维差分
#include <iostream>
using namespace std;
const int N = 1010;
int n, m, q;
int a[N][N], b[N][N];
void insert(int x1, int x2, int y1, int y2, int c) {
b[x1][y1] += c;
b[x2 + 1][y1] -= c;
b[x1][y2 + 1] -= c;
b[x2 + 1][y2 + 1] += c;
}
int main() {
scanf("%d%d%d", &n, &m, &q);
for (int i = 1; i <= n; ++i)
for (int j = 1; j <= m; ++j) scanf("%d", &a[i][j]);
for (int i = 1; i <= n; ++i)
for (int j = 1; j <= m; ++j) insert(i, i, j, j, a[i][j]);
while (q--) {
int x1, y1, x2, y2, c;
cin >> x1 >> y1 >> x2 >> y2 >> c;
insert(x1, x2, y1, y2, c);
}
for (int i = 1; i <= n; ++i)
for (int j = 1; j <= m; ++j)
b[i][j] += b[i - 1][j] + b[i][j - 1] - b[i - 1][j - 1];
for (int i = 1; i <= n; ++i) {
for (int j = 1; j <= m; ++j) printf("%d ", b[i][j]);
printf("\n");
}
return 0;
}
双指针
求 n 的二进制表示第 K 位是几? 先右移动 k 位,再看个位数是啥
n >> k & 1;
求 k 中有几位1? 求个位是否是1,然后右移,直到为0.
原码: 0000 1010
反码: 1111 0101
补码: 1111 0110 反码 + 1
离散化
把不同的值映射到连续数字。
特点:值域大,数字少
- 存储所有待离散化的值
- 排序
- 去重
- 离散化
- 二分求出 x 对应的离散化的值
Acwing 802题,数的值域很大,数不多,用前缀和浪费空间,就可用离散化。
#include <iostream>
#include <vector>
#include <algorithm>
using namespace std;
typedef pair<int, int> PII;
const int N = 300010;
int n, m;
int a[N], s[N];
vector<int> alls;
vector<PII> add, query;
int find(int x) {
int l = 0, r = alls.size() - 1;
while (l < r) {
int mid = l + r >> 1;
if (alls[mid] >= x) r = mid;
else l = mid + 1;
}
return r + 1; //映射到从1开始的自然数
}
int main() {
cin >> n >> m;
for (int i = 0; i < n; ++i) {
int x, c;
cin >> x >> c;
add.push_back({x, c});
alls.push_back(x);
}
for (int i = 0; i < m; ++i) {
int l, r;
cin >> l >> r;
query.push_back({l, r});
alls.push_back(l);
alls.push_back(r);
}
// 去重
sort(alls.begin(), alls.end());
alls.erase(unique(alls.begin(), alls.end()), alls.end());
for (auto item : add) {
int x = find(item.first);
a[x] += item.second;
}
// 预处理前缀和
for (int i = 1; i <= alls.size(); ++i) s[i] = s[i - 1] + a[i];
for (auto item : query) {
int l = find(item.first), r = find(item.second);
cout << s[r] - s[l - 1] << endl;
}
return 0;
}