from __future__ import division
import time
import torch
import torch.nn as nn
from torch.autograd import Variable
import numpy as np
import cv2
from util import *
import argparse
import os
import os.path as osp
from darknet import Darknet
import pickle as pkl
import pandas as pd
import random
def arg_parse():
"""视频检测模块的参数转换"""
#创建一个ArgumentParser对象,格式: 参数名, 目标参数(dest是字典的key),帮助信息,默认值,类型
parser = argparse.ArgumentParser(description='YOLO v3 检测模型')
parser.add_argument("--bs", dest = "bs", help = "Batch size,默认为 1", default = 1)
parser.add_argument("--confidence", dest = "confidence", help = "目标检测结果置信度阈值", default = 0.5)
parser.add_argument("--nms_thresh", dest = "nms_thresh", help = "NMS非极大值抑制阈值", default = 0.4)
parser.add_argument("--cfg", dest = 'cfgfile', help =
"配置文件",
default = "cfg/yolov3.cfg", type = str)
parser.add_argument("--weights", dest = 'weightsfile', help =
"模型权重",
default = "yolov3.weights", type = str)
parser.add_argument("--reso", dest = 'reso', help =
"网络输入分辨率. 分辨率越高,则准确率越高; 反之亦然",
default = "416", type = str)
parser.add_argument("--video", dest = "videofile", help = "待检测视频目录", default = "video.avi", type = str)
return parser.p