@tf_export("matmul")
def matmul(a,
b,
transpose_a=False,
transpose_b=False,
adjoint_a=False,
adjoint_b=False,
a_is_sparse=False,
b_is_sparse=False,
name=None):
"""Multiplies matrix `a` by matrix `b`, producing `a` * `b`.
将矩阵a与矩阵b相乘,得出a * b。
The inputs must, following any transpositions, be tensors of rank >= 2
where the inner 2 dimensions specify valid matrix multiplication arguments,
and any further outer dimensions match.
在进行任何换位后,输入必须为(秩?)> = 2的张量,其中内部2维指定有效的矩阵乘法自变量,
并且任何其他外部维匹配。
Both matrices must be of the same type. The supported types are:
`float16`, `float32`, `float64`, `int32`, `complex64`, `complex128`.
两种矩阵必须属于同一类型。 支持的类型有:`float16`,`float32`,`float64`,`int32`,`complex64`,`complex128`。
Either matrix can be transposed or adjointed (conjugated and transposed) on
the fly by setting one of the corresponding flag to `True`. These are `False`
by default.
通过将相应标志之一设置为“ True”,可以即时对矩阵进行转置或连接(共轭和转置)。 这些默认为False。
If one or both of the matrices contain a lot of zeros, a more efficient
multiplication algorithm can be used by setting the corresponding
`a_is_sparse` or `b_is_sparse` flag to `True`. These are `False` by default.
This optimization is only available for plain matrices (rank-