SparkStreaming读取kafka两种方式对比

本文对比了SparkStreaming读取Kafka的两种方式。Receiver方式用Receiver获取数据,默认配置下可能丢数据,启用WAL可零丢失;Direct方式在Spark 1.3引入,更健壮,有简化并行读取、高性能、一次且仅一次事务机制等优点。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

SparkStreaming读取kafka两种方式对比

Direct方式连接kafka数据不同于receiver方式,direct方式与kafka的partition一一对应,有多少个partition就有多少个rdd分区,offset以长整形变量的形式存在,不同应用各自维护自己的offset,默认是从最新数据开始读取。

一,receiver方式读取

这种方式使用Receiver来获取数据。Receiver是使用Kafka的高层次Consumer API来实现的。receiver从Kafka中获取的数据都是存储在Spark Executor的内存中的,然后Spark Streaming启动的job会去处理那些数据。

然而,在默认的配置下,这种方式可能会因为底层的失败而丢失数据。如果要启用高可靠机制,让数据零丢失,就必须启用Spark Streaming的预写日志机制(Write Ahead Log,WAL)。该机制会同步地将接收到的Kafka数据写入分布式文件系统(比如HDFS)上的预写日志中。所以,即使底层节点出现了失败,也可以使用预写日志中的数据进行恢复。

需要注意的要点

1、Kafka中的topic的partition,与Spark中的RDD的partition是没有关系的。所以,在KafkaUtils.createStream()中,提高partition的数量,只会增加一个Receiver中,读取partition的线程的数量。不会增加Spark处理数据的并行度。

2、可以创建多个Kafka输入DStream,使用不同的consumer group和topic,来通过多个receiver并行接收数据。

3、如果基于容错的文件系统,比如HDFS,启用了预写日志机制,接收到的数据都会被复制一份到预写日志中。因此,在KafkaUtils.createStream()中,设置的持久化级别是StorageLevel.MEMORY_AND_DISK_SER

实现:

二,direct方式读取

这种新的不基于Receiver的直接方式,是在Spark 1.3中引入的,从而能够确保更加健壮的机制。替代掉使用Receiver来接收数据后,这种方式会周期性地查询Kafka,来获得每个topic+partition的最新的offset,从而定义每个batch的offset的范围。当处理数据的job启动时,就会使用Kafka的简单consumer api来获取Kafka指定offset范围的数据。

这种方式有如下优点:

1、简化并行读取:如果要读取多个partition,不需要创建多个输入DStream然后对它们进行union操作。Spark会创建跟Kafka partition一样多的RDD partition,并且会并行从Kafka中读取数据。所以在Kafka partition和RDD partition之间,有一个一对一的映射关系。

2、高性能:如果要保证零数据丢失,在基于receiver的方式中,需要开启WAL机制。这种方式其实效率低下,因为数据实际上被复制了两份,Kafka自己本身就有高可靠的机制,会对数据复制一份,而这里又会复制一份到WAL中。而基于direct的方式,不依赖Receiver,不需要开启WAL机制,只要Kafka中作了数据的复制,那么就可以通过Kafka的副本进行恢复。

3、一次且仅一次的事务机制:

基于receiver的方式,是使用Kafka的高阶API来在ZooKeeper中保存消费过的offset的。这是消费Kafka数据的传统方式。这种方式配合着WAL机制可以保证数据零丢失的高可靠性,但是却无法保证数据被处理一次且仅一次,可能会处理两次。因为receiver会周期性提交offset到zk,Spark和ZooKeeper之间可能是不同步的。

基于direct的方式,使用kafka的简单api,Spark Streaming自己就负责追踪消费的offset,并保存在checkpoint中。Spark自己一定是同步的,因此可以保证数据是消费一次且仅消费一次。

<think>好的,用户现在问的是关于Spark Streaming如何读取Kafka的数据。之前他们问过Python操作Kafka,现在可能是在同一个项目或学习路径中进阶到流处理了。我需要先确定他们的背景和需求。 首先,用户可能已经了解Kafka的基本操作,现在想用Spark Streaming进行实时数据处理。要介绍Spark Streaming和Kafka的集成方法,可能需要对比两种常用的方式:基于Receiver的方法和Direct Approach。不过现在Spark Streaming可能已经更新,需要确认最新的方法。 记得用户之前用的是Python,所以可能需要PySpark的例子。不过Spark Streaming在Python中主要通过PySpark实现,而代码示例可能涉及Scala,但用户可能需要Python版本。要确保提供的代码示例是Python的。 用户可能对集成步骤、依赖库、基本配置和示例代码感兴趣。需要提到必要的Maven或Gradle依赖,但如果是PySpark,可能需要提到相关的包,比如spark-streaming-kafka。不过需要注意,Spark的不同版本对应的包名称可能不同,比如Spark 2.4.x和3.x的区别。 另外,用户可能关心如何设置Kafka参数,比如bootstrap servers、topic、消费者组等。还有如何处理偏移量,确保数据不丢失,以及可能的性能优化参数,比如auto.offset.reset,enable.auto.commit等。 可能用户在实际操作中会遇到依赖问题,比如如何正确引入Kafka的库,或者在集群上运行时需要确保所有节点都有相应的jar包。这时候可能需要提醒他们注意版本兼容性,以及提交应用时的--packages选项。 另外,需要提到结构化流(Structured Streaming)的方式,因为Spark已经逐渐转向结构化流API,可能比传统的Spark Streaming更推荐使用。所以应该包括两种方式的示例:传统的Spark Streaming和Structured Streaming。 用户可能还关心数据处理后的输出操作,比如保存到HDFS、数据库或打印到控制台。需要给出保存结果的示例,比如foreachRDD或writeStream的输出模式。 最后,常见问题部分需要包括偏移量管理、容错机制、性能调优,比如分区数、并行度调整,以及可能的错误处理,比如连接超时或反序列化问题。 总结:需要结构清晰,分步骤介绍两种集成方式,提供Python示例,强调版本差异,依赖管理,配置参数,以及常见问题和优化建议。同时注意用户可能的PySpark背景,确保示例代码正确可用。</think>在 Spark Streaming 中读取 Kafka 数据是实时流处理的常见场景,以下是实现方法及关键步骤: --- ### 一、依赖准备 Spark 提供了两种Kafka 集成的 API(需根据 Spark 版本选择): 1. **传统方式(Receiver-based)**(已逐渐淘汰) 2. **Direct Approach(推荐)**:基于 Kafka 的消费者 API,更高效且支持 Exactly-Once 语义。 **Maven/Gradle 依赖**(以 Spark 3.x + Kafka 0.10+ 为例): ```xml <!-- Spark Streaming + Kafka 集成包 --> <dependency> <groupId>org.apache.spark</groupId> <artifactId>spark-streaming-kafka-0-
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值