基于DeepLearning4J框架实现人脸检测

 一、DeepLearning4J框架简介

        DeepLearning4J(DL4J)是一个Java编写的、基于深度学习算法的神经网络框架。它独立、分布式地运行于Hadoop和Spark之上,可以实现大规模数据的并行处理和分布式训练。

二、DeepLearning4J环境搭建

        截至当前时间(2023.06.16),DL4J的最新版本为1.0.0-M2.1,本文目前也使用的是该版本。M2.1版本需要JDK11以上的运行环境,请确保电脑的JDK版本大于11。

        由于DL4J的包较大,建议先把maven的源地址配置为国内的地址。

1.CPU部署

        本方法适用于没有显卡或显卡不支持CUAD,如果电脑有显卡且以及安装好驱动和CUDA,可以使用GPU部署方式去部署。

<!--DL4J核心包-->
<dependency>
    <groupId>org.deeplearning4j</groupId>
    <artifactId>deeplearning4j-core</artifactId>
    <version>1.0.0-M2.1</version>
</dependency>

<!--DL4J CPU计算包-->
<dependency>
    <groupId>org.nd4j</groupId>
    <artifactId>nd4j-native-platform</artifactId>
    <version>1.0.0-M2.1</version>
</dependency>

<!--DL4J 模型库包-->
<dependency>
    <groupId>org.deeplearning4j</groupId>
    <artifactId>deeplearning4j-zoo</artifactId>
    <version>1.0.0-M2.1</version>
</dependency>

2.GPU部署

        请根据电脑上的CUDA版本引入对应的包,我电脑上CUDA版本是11.6,所有下面引用的是nd4j-cuda-11.6-platform,具体支持哪些CUDA版本请查阅 : https://mvnrepository.com/

<!--DL4J核心包-->
<dependency>
    <groupId>org.deeplearning4j</groupId>
    <artifactId>deeplearning4j-core</artifactId>
    <version>1.0.0-M2.1</version>
</dependency>

<!--DL4J GPU计算包-->
<dependency>
    <groupId>org.nd4j</groupId>
    <artifactId>nd4j-cuda-11.6-platform</artifactId>
    <version>1.0.0-M2.1</version>
</dependency>

<!--DL4J 模型库包-->
<dependency>
    <groupId>org.deeplearning4j</groupId>
    <artifactId>deeplearning4j-zoo</artifactId>
    <version>1.0.0-M2.1</version>
</dependency>

三、模型训练和测试

1.数据集准备

        1.1使用自定义数据集

                如果想使用自己的数据去进行训练,需要下载标注工具。推荐使用lableimg工具进行标注。本文是基于TinyYOLO去实现人脸检测,所以一张完整的图片数据集应该是如下格式:

 classe.txt是类别文件,因为本文中只进行人脸检测,所以类别文件中只有一行数据。内容如下:

Human face

000db8328068a829.txt是标签文件,与图片文件名称相同。如图上图所示,图片中有3个人脸,所以标签文件内容如下:

0 0.267578125 0.5758854166666667 0.16125 0.2325
0 0.4457421875 0.4863545 0.148125 0.23583299999999996
0 0.6105859375 0.3789065833333334 0.17062500000000003 0.3

如何使用lableimg工具生成yolo数据集可以自行百度。

        1.2使用google开源的数据集

                如果不想自己麻烦去标注上百张训练集的话,也可以下载开源的数据集。具体如何下载可以参考以下博文:

(2条消息) 用Open Images Dataset V6制作yolo训练数据集(darknet版本)_Philharmy_Wang的博客-优快云博客https://blog.youkuaiyun.com/PhilharmyWang/article/details/121784119

2.编写训练代码

        如果已经拥有数据集,就可以编写代码来训练我们的模型了,本文使用1万张图片作为训练集,训练集如下(1万张图片文件,1万个标签文件,1个classe.txt文件):

 Java训练代码如下:

public static void main(String[] args) throws Exception {

        //图像宽高和网格宽高
        int width = 416, height = 416;
        int gridWidth = 13, gridHeight = 13;

        //图像通道和种类
        int nChannels = 3, nClasses = 1;

        //先验框
        int nBoxes = 5;
        double[][] priorBoxes = {{2, 2}, {2, 2}, {2, 2}, {2, 2}, {2, 2}};

        //批量大小和训练轮次
        int batchSize = 4, nEpochs = 10;

        //训练文件的路径
        String trainPath = "D:\\DeepL4J\\Yolo_Face\\train";
        //模型的存储路径
        String modelPath = "D:\\DeepL4J\\Yolo_Face\\mod\\model.dat";

        
        //准备训练文件
        File trainFile = new File(trainPath);
        InputSplit[] data = new FileSplit(trainFile, NativeImageLoader.ALLOWED_FORMATS, new Random(123)).sample(null, 1.0, 0.0);
        InputSplit trainData = data[0];

        //训练数据
        ObjectDetectionRecordReader recordReaderTrain = new ObjectDetectionRecordReader(height, width, nChannels, gridHeight, gridWidth, new YoloLabelProvider(trainFile.getAbsolutePath()));
        recordReaderTrain.initialize(trainData);
        //训练迭代器
        RecordReaderDataSetIterator train = new RecordReaderDataSetIterator(recordReaderTrain, batchSize, 1, 1, true);
        train.setPreProcessor(new ImagePreProcessingScaler(0, 1));


        ComputationGraph model;
        
        //如果模型存在则加载模型,不存在则加载模型并训练
        if (new File(modelPath).exists()) {
            System.out.println("Load model...");
            model = ComputationGraph.load(new File(modelPath), true);
            model.init();

            
        } else {
            System.out.println("Build model...");
            //迁移学习
            ComputationGraph pretrained = (ComputationGraph) TinyYOLO.builder().build().initPretrained();
            INDArray priors = Nd4j.create(priorBoxes);

            FineTuneConfiguration fineTuneConf = new FineTuneConfiguration.Builder()
                    .seed(123)
                    .optimizationAlgo(OptimizationAlgorithm.STOCHASTIC_GRADIENT_DESCENT)
                    .gradientNormalization(GradientNormalization.RenormalizeL2PerLayer)
                    .gradientNormalizationThreshold(1.0)
                    .updater(new Nesterovs.Builder().learningRate(1e-3).momentum(0.9).build())
                    .l2(0.00001)
                    .activation(Activation.IDENTITY)
                    .trainingWorkspaceMode(WorkspaceMode.SEPARATE)
                    .inferenceWorkspaceMode(WorkspaceMode.SEPARATE)
                    .build();

            model = new TransferLearning.GraphBuilder(pretrained)
                    .fineTuneConfiguration(fineTuneConf)
                    .removeVertexKeepConnections("conv2d_9")
                    .removeVertexKeepConnections("outputs")
                    .addLayer("convolution2d_9",
                            new ConvolutionLayer.Builder(1, 1)
                                    .nIn(1024)
                                    .nOut(nBoxes * (5 + nClasses))
                                    .stride(1, 1)
                                    .convolutionMode(ConvolutionMode.Same)
                                    .weightInit(WeightInit.XAVIER)
                                    .activation(Activation.IDENTITY)
                                    .build(),
                            "leaky_re_lu_8")
                    .addLayer("outputs",
                            new Yolo2OutputLayer.Builder()
                                    .lambdaNoObj(0.5)
                                    .lambdaCoord(5.0)
                                    .boundingBoxPriors(priors)
                                    .build(),
                            "convolution2d_9")
                    .setOutputs("outputs")
                    .build();
            
            System.out.println("Train model...");
            
            model.setListeners(new ScoreIterationListener(1));
            for (int i = 0; i < nEpochs; i++) {
                train.reset();
                while (train.hasNext()){
                    model.fit(train.next());
                }
                
                //每一轮训练完都保存模型
                ModelSerializer.writeModel(model, modelPath, true);
            }
        }
    }

  上面代码中,依赖的YoloLabelProvider类的代码如下:

public class YoloLabelProvider implements ImageObjectLabelProvider {
    private String baseDirectory;
    private List<String> labels;

    public YoloLabelProvider(String baseDirectory) {
        this.baseDirectory = baseDirectory;
        Assert.notNull(baseDirectory, "标签目录不能为空");
        if (!new File(baseDirectory).exists()) {
            throw new IllegalStateException(
                    "baseDirectory directory does not exist. txt files should be " + "present at  Expected location: " + baseDirectory);
        }
        String classTxtPath = FilenameUtils.concat(this.baseDirectory, "classes.txt");
        File classFile = new File(classTxtPath);
        Assert.isTrue(classFile.exists(), "classTxtPath does not exist");
        try {
            labels = Files.readAllLines(classFile.toPath());
        } catch (Exception e) {
            throw new RuntimeException(e);
        }
    }

    @Override
    public List<ImageObject> getImageObjectsForPath(String path) {
        int idx = path.lastIndexOf('/');
        idx = Math.max(idx, path.lastIndexOf('\\'));
        String filename = path.substring(idx + 1, path.length() - 4); //-4: ".png"
        String txtPath = FilenameUtils.concat(this.baseDirectory, filename + ".txt");
        String pngPath = FilenameUtils.concat(this.baseDirectory, filename + ".jpg");
        File txtFile = new File(txtPath);
        if (!txtFile.exists()) {
            throw new IllegalStateException("Could not find TXT file for image " + path + "; expected at " + txtPath);
        }
        List<String> readAllLines = null;
        BufferedImage image = null;
        try {
            image = ImageIO.read(Paths.get(pngPath).toFile());
            readAllLines = Files.readAllLines(txtFile.toPath());
        } catch (Exception e) {
            throw new RuntimeException(e);
        }
        int width = image.getWidth();
        int height = image.getHeight();

        //去除空行
        for (int i = 0; i < readAllLines.size(); i++) {
            if (readAllLines.get(i).equals("")){
                readAllLines.remove(i);
            }
        }


        List<ImageObject> imageObjects = readAllLines.stream().map(line -> {
            String[] data = line.split(" ");
            int centerX = Math.round(Float.valueOf(data[1]) * width);
            int centerY = Math.round(Float.valueOf(data[2]) * height);
            int bboxWidth = Math.round(Float.valueOf(data[3]) * width);
            int bboxHeight = Math.round(Float.valueOf(data[4]) * height);
            int xmin = centerX - (bboxWidth / 2);
            int ymin = centerY - (bboxHeight / 2);
            int xmax = centerX + (bboxWidth / 2);
            int ymax = centerY + (bboxHeight / 2);
            ImageObject imageObject = new ImageObject(xmin, ymin, xmax, ymax, this.labels.get(Integer.valueOf(data[0])));
            return imageObject;
        }).collect(Collectors.toList());
        return imageObjects;
    }

    @Override
    public List<ImageObject> getImageObjectsForPath(URI uri) {
        return getImageObjectsForPath(uri.toString());
    }
}

3.使用模型

        3.1使用模型对图片进行预测

                模型训练完毕后,可以参考训练代码中的Load model...部分去加载模型,然后可以使用如下代码对图片中的人脸目标进行预测:

//测试图片
File imageFile = new File("D:\\DeepL4J\\Yolo_Face\\test\\1358.jpg");

//读取图片
NativeImageLoader imageLoader = new NativeImageLoader(416, 416, 3);
INDArray indArray = imageLoader.asMatrix(imageFile);
//图片归一化
DataNormalization dataNormalization = new ImagePreProcessingScaler(0, 1);
dataNormalization.transform(indArray);

INDArray results = model.outputSingle(indArray);
org.deeplearning4j.nn.layers.objdetect.Yolo2OutputLayer yout = (org.deeplearning4j.nn.layers.objdetect.Yolo2OutputLayer) model.getOutputLayer(0);
List<DetectedObject> objs = yout.getPredictedObjects(results, 0.5);

for (int i = 0; i < objs.size(); i++) {
    System.out.println("预测到第"+(i+1)+"个目标,左上角坐标:"+ objs.get(i).getTopLeftXY().toString() + ",右下角坐标:"+ objs.get(i).getBottomRightXY().toString());
}

        3.2使用模型对电脑前置摄像头画面进行预测

                使用模型对前置摄像头画面预测的代码和效果如下:

public static void main(String[] args) throws Exception {
    //模型的存储路径
    String modelPath = "D:\\DeepL4J\\Yolo_Face\\mod\\model.dat";
    model = ComputationGraph.load(new File(modelPath), true);
    model.init();

    OpenCVFrameGrabber grabber = new OpenCVFrameGrabber(0);
    grabber.start();   //开始获取摄像头数据
    CanvasFrame canvas = new CanvasFrame("摄像头");//新建一个窗口
    canvas.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
    canvas.setAlwaysOnTop(true);

    while (true) {
        if (!canvas.isDisplayable()) {//窗口是否关闭
            grabber.stop();//停止抓取
            System.exit(2);//退出
        }

        OpenCVFrameConverter.ToIplImage converter = new OpenCVFrameConverter.ToIplImage();
        Mat cameraMat = converter.convertToMat(grabber.grab());

        NativeImageLoader imageLoader = new NativeImageLoader(416, 416, 3);
        INDArray indArray = imageLoader.asMatrix(cameraMat);
        DataNormalization dataNormalization = new ImagePreProcessingScaler(0, 1);
        dataNormalization.transform(indArray);

        INDArray results = model.outputSingle(indArray);
        org.deeplearning4j.nn.layers.objdetect.Yolo2OutputLayer yout = (org.deeplearning4j.nn.layers.objdetect.Yolo2OutputLayer) model.getOutputLayer(0);
        List<DetectedObject> objs = yout.getPredictedObjects(results, 0.3);

        int w = cameraMat.cols();
        int h = cameraMat.rows();

        for (DetectedObject obj : objs) {
            double[] xy1 = obj.getTopLeftXY();
            double[] xy2 = obj.getBottomRightXY();
            int x1 = (int) Math.round(w * xy1[0] / 13);
            int y1 = (int) Math.round(h * xy1[1] / 13);
            int x2 = (int) Math.round(w * xy2[0] / 13);
            int y2 = (int) Math.round(h * xy2[1] / 13);
            rectangle(cameraMat, new Point(x1, y1), new Point(x2, y2), Scalar.RED);
        }
        canvas.showImage(converter.convert(cameraMat));
    }
}

 

四、模型集成到SpringBoot中

        运行效果如下:

         代码已上传(其中的模型使用1万张图片训练100轮)。

评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值