补充知识
来源于数学之美第五章:
到了 19 世纪,概率论的发展从相对静止的随机变量的研究发展到随机变量的时间序列 ( s 1 , s 2 , s 3 , … ) (s_1, s_2, s_3, \dots) (s1,s2,s3,…),即随机过程(动态的)。这在哲学的意义上,是人类认识的一个飞跃。但是,随机过程比随机变量复杂得多。在任意时刻 t t t,对应的状态为 s t s_t st都是随机的。举一个简单的例子,可以把 s 1 , s 2 , s 3 , … s_1, s_2, s_3, \dots s1,s2,s3,…当作每天的最高气温,每天的最高气温可能和周围的状态有关,还和以前的最高气温有关,这样的随机过程就有两个维度的不确定。马尔可夫为了简化这个问题,提出了一种简单化的假设,即对于任何状态 s t s_t st,未来的状态 s t + 1 s_{t+1} st+1 仅依赖于当前的状态 (s_t),而与过去的状态无关。这可以表示为:
P ( s t + 1 ∣ s t , s t − 1 , … , s 0 ) = P ( s t + 1 ∣ s t ) P(s_{t+1} \mid s_t, s_{t-1}, \ldots, s_0) = P(s_{t+1} \mid s_t) P(st+1∣s