flask group_by 不能使用的问题

博客给出链接https://limh.me/post-22.html ,并展示了MySQL配置文件 /etc/my.cnf 中 [mysqld] 部分的配置内容,主要是设置 sql_mode 以去除 ONLY_FULL_GROUP_BY。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

https://limh.me/post-22.html

 

/etc/my.cnf

[mysqld]

sql_mode = STRICT_TRANS_TABLES,NO_ZERO_IN_DATE,NO_ZERO_DATE,ERROR_FOR_DIVISION_BY_ZERO,NO_AUTO_CREATE_USER,NO_ENGINE_SUBSTITUTION

 

主要是去除 ONLY_FULL_GROUP_BY

在划线处完成SampleApp工程应用层初始化函数代码的注释(用中文简述各段代码)。 void SampleApp_Init( uint8 task_id ) { SampleApp_TaskID = task_id; SampleApp_NwkState = DEV_INIT; SampleApp_TransID = 0; // #if defined ( BUILD_ALL_DEVICES ) // The "Demo" target is setup to have BUILD_ALL_DEVICES and HOLD_AUTO_START // We are looking at a jumper (defined in SampleAppHw.c) to be jumpered // together - if they are - we will start up a coordinator. Otherwise, the device will start as a router. if ( readCoordinatorJumper() ) zgDeviceLogicalType = ZG_DEVICETYPE_COORDINATOR; else zgDeviceLogicalType = ZG_DEVICETYPE_ROUTER; #endif // BUILD_ALL_DEVICES // #if defined ( HOLD_AUTO_START ) // HOLD_AUTO_START is a compile option that will surpress ZDApp // from starting the device and wait for the application to start the device. ZDOInitDevice(0); #endif // SampleApp_Periodic_DstAddr.addrMode = (afAddrMode_t)AddrBroadcast; SampleApp_Periodic_DstAddr.endPoint = SAMPLEAPP_ENDPOINT; SampleApp_Periodic_DstAddr.addr.shortAddr = 0xFFFF; // SampleApp_Flash_DstAddr.addrMode = (afAddrMode_t)afAddrGroup; SampleApp_Flash_DstAddr.endPoint = SAMPLEAPP_ENDPOINT; SampleApp_Flash_DstAddr.addr.shortAddr = SAMPLEAPP_FLASH_GROUP; // SampleApp_epDesc.endPoint = SAMPLEAPP_ENDPOINT; SampleApp_epDesc.task_id = &SampleApp_TaskID; SampleApp_epDesc.simpleDesc=(SimpleDescriptionFormat_t *)&SampleApp_SimpleDesc; SampleApp_epDesc.latencyReq = noLatencyReqs; // Register the endpoint description with the AF afRegister( &SampleApp_epDesc ); // Register for all key events - This app will handle all key events RegisterForKeys( SampleApp_TaskID ); // By default, all devices start out in Group 1 SampleApp_Group.ID = 0x0001; osal_memcpy( SampleApp_Group.name, "Group 1", 7 ); aps_AddGroup( SAMPLEAPP_ENDPOINT, &SampleApp_Group ); }
06-05
#include <stdio.h> #include <string.h> #include <math.h> #include "esp_log.h" #include "freertos/FreeRTOS.h" #include "freertos/task.h" #include "freertos/event_groups.h" #include "freertos/semphr.h" #include "driver/rmt_tx.h" #include "led_ws2812.h" #include "driver/gpio.h" #include "driver/adc.h" #include "driver/i2c.h" #include "nvs_flash.h" #include "mqtt_client.h" #include "simple_wifi_sta.h" // 网络配置 #define MQTT_ADDRESS "114.55.64.216" // MQTT连接地址 #define MQTT_PORT 1863 // MQTT连接端口号 #define MQTT_CLIENT "soil_0001" // Client ID #define MQTT_USERNAME "devname" // MQTT用户名 #define MQTT_PASSWORD "devpwd" // MQTT密码 #define MQTT_PUBLIC_TOPIC "/gws/soil_0001" // 推送消息主题 #define MQTT_SUBSCRIBE_TOPIC "/gws/soil_0001" // 订阅主题 // 定义事件组,用于通知WIFI连接成功 #define WIFI_CONNECT_BIT BIT0 static EventGroupHandle_t s_wifi_ev = NULL; // MQTT客户端操作句柄 static esp_mqtt_client_handle_t s_mqtt_client = NULL; // MQTT连接标志 static bool s_is_mqtt_connected = false; // 灯带配置 #define WS2812_GPIO_NUM GPIO_NUM_45 #define WS2812_LED_NUM 6 TaskHandle_t RgbTaskHandle = NULL; // 添加RGB任务控制事件组 static EventGroupHandle_t rgb_event_group; #define RGB_RUN_BIT BIT0 // RGB任务运行标志位 // 雷达配置 #define LED_GPIO GPIO_NUM_16 #define LEIDA_GPIO GPIO_NUM_4 TaskHandle_t RadarTaskHandle = NULL; // ADC配置 #define ADC_GPIO GPIO_NUM_8 // IO8对应ADC1通道7 #define ADC_CHANNEL ADC1_CHANNEL_7 TaskHandle_t AdcTaskHandle = NULL; // I2C参数配置 #define I2C_MASTER_SCL_IO 2 // SCL引脚 #define I2C_MASTER_SDA_IO 1 // SDA引脚 #define I2C_MASTER_NUM I2C_NUM_0 // I2C控制器编号 #define I2C_MASTER_FREQ_HZ 100000 // I2C频率100kHz #define I2C_MASTER_TX_BUF_DISABLE 0 // 禁用发送缓冲区 #define I2C_MASTER_RX_BUF_DISABLE 0 // 禁用接收缓冲区 TaskHandle_t IicTaskHandle = NULL; // 传感器地址 #define BH1750_ADDR 0x23 // BH1750地址 #define SHT20_ADDR 0x40 // SHT20温湿度传感器地址 #define BMP280_ADDR 0x76 // BMP280 I2C地址 // BH1750寄存器定义 #define BH1750_POWER_DOWN 0x00 #define BH1750_POWER_ON 0x01 #define BH1750_RESET 0x07 #define BH1750_CONTINUOUS_HIGH_RES_MODE 0x10 // SHT20寄存器定义 #define SHT20_TRIGGER_TEMP_MEASUREMENT 0xF3 #define SHT20_TRIGGER_HUMIDITY_MEASUREMENT 0xF5 #define SHT20_SOFT_RESET 0xFE // BMP280相关定义 #define BMP280_REG_ID 0xD0 #define BMP280_REG_RESET 0xE0 #define BMP280_REG_STATUS 0xF3 #define BMP280_REG_CTRL_MEAS 0xF4 #define BMP280_REG_CONFIG 0xF5 #define BMP280_REG_PRESS_MSB 0xF7 #define BMP280_REG_TEMP_MSB 0xFA #define BMP280_REG_CALIB 0x88 // BMP280校准参数结构体 typedef struct { uint16_t dig_T1; int16_t dig_T2; int16_t dig_T3; uint16_t dig_P1; int16_t dig_P2; int16_t dig_P3; int16_t dig_P4; int16_t dig_P5; int16_t dig_P6; int16_t dig_P7; int16_t dig_P8; int16_t dig_P9; } bmp280_calib_t; // 传感器数据结构体(全局共享) typedef struct { float temp; // 温度(°C) float humi; // 湿度(%) float press; // 气压(Pa) float lux; // 光照(lx) float adc_voltage;// ADC电压(V) float adc_resist; // 土壤电阻(Ω) } sensor_data_t; // 全局传感器数据及互斥锁 static sensor_data_t g_sensor_data = { 0 }; static SemaphoreHandle_t g_sensor_mutex; static const char* TAG = "main"; static const char* TAG2 = "adc_radar"; static const char* TAG_ADC = "adc"; static const char* TAG_I2C = "I2C_Sensors"; /** * mqtt连接事件处理函数 */ static void aliot_mqtt_event_handler(void* event_handler_arg, esp_event_base_t event_base, int32_t event_id, void* event_data) { esp_mqtt_event_handle_t event = event_data; esp_mqtt_client_handle_t client = event->client; switch ((esp_mqtt_event_id_t)event_id) { case MQTT_EVENT_CONNECTED: // 连接成功 ESP_LOGI(TAG, "mqtt connected"); s_is_mqtt_connected = true; // 连接成功后订阅主题 esp_mqtt_client_subscribe_single(s_mqtt_client, MQTT_SUBSCRIBE_TOPIC, 1); break; case MQTT_EVENT_DISCONNECTED: // 连接断开 ESP_LOGI(TAG, "mqtt disconnected"); s_is_mqtt_connected = false; break; case MQTT_EVENT_SUBSCRIBED: // 收到订阅ACK ESP_LOGI(TAG, "mqtt subscribed ack, msg_id=%d", event->msg_id); break; case MQTT_EVENT_DATA: // 收到订阅消息 printf("TOPIC=%.*s\r\n", event->topic_len, event->topic); printf("DATA=%.*s\r\n", event->data_len, event->data); break; case MQTT_EVENT_ERROR: ESP_LOGI(TAG, "MQTT_EVENT_ERROR"); break; default: break; } } /** 启动mqtt连接 */ void mqtt_start(void) { esp_mqtt_client_config_t mqtt_cfg = { 0 }; mqtt_cfg.broker.address.transport = MQTT_TRANSPORT_OVER_TCP; mqtt_cfg.broker.address.hostname = MQTT_ADDRESS; mqtt_cfg.broker.address.port = MQTT_PORT; mqtt_cfg.credentials.client_id = MQTT_CLIENT; mqtt_cfg.credentials.username = MQTT_USERNAME; mqtt_cfg.credentials.authentication.password = MQTT_PASSWORD; ESP_LOGI(TAG, "mqtt connect->clientId:%s,username:%s", mqtt_cfg.credentials.client_id, mqtt_cfg.credentials.username); s_mqtt_client = esp_mqtt_client_init(&mqtt_cfg); esp_mqtt_client_register_event(s_mqtt_client, ESP_EVENT_ANY_ID, aliot_mqtt_event_handler, s_mqtt_client); esp_mqtt_client_start(s_mqtt_client); } /** wifi事件通知 */ void wifi_event_handler(WIFI_EV_e ev) { if (ev == WIFI_CONNECTED) { xEventGroupSetBits(s_wifi_ev, WIFI_CONNECT_BIT); } } /** I2C主控制器初始化 */ static esp_err_t i2c_master_init(void) { i2c_config_t conf = { .mode = I2C_MODE_MASTER, .sda_io_num = I2C_MASTER_SDA_IO, .scl_io_num = I2C_MASTER_SCL_IO, .sda_pullup_en = GPIO_PULLUP_ENABLE, .scl_pullup_en = GPIO_PULLUP_ENABLE, .master.clk_speed = I2C_MASTER_FREQ_HZ, }; ESP_ERROR_CHECK(i2c_param_config(I2C_MASTER_NUM, &conf)); return i2c_driver_install(I2C_MASTER_NUM, conf.mode, I2C_MASTER_RX_BUF_DISABLE, I2C_MASTER_TX_BUF_DISABLE, 0); } /** 初始化BH1750环境光传感器 */ bool bh1750_init(void) { ESP_LOGI(TAG_I2C, "Initializing BH1750..."); // 软复位 i2c_cmd_handle_t cmd = i2c_cmd_link_create(); i2c_master_start(cmd); i2c_master_write_byte(cmd, (BH1750_ADDR << 1) | I2C_MASTER_WRITE, true); i2c_master_write_byte(cmd, BH1750_RESET, true); i2c_master_stop(cmd); esp_err_t ret = i2c_master_cmd_begin(I2C_MASTER_NUM, cmd, pdMS_TO_TICKS(100)); i2c_cmd_link_delete(cmd); if (ret != ESP_OK) { ESP_LOGE(TAG_I2C, "BH1750 reset failed: 0x%x", ret); return false; } vTaskDelay(pdMS_TO_TICKS(10)); // 启动连续高分辨率模式 cmd = i2c_cmd_link_create(); i2c_master_start(cmd); i2c_master_write_byte(cmd, (BH1750_ADDR << 1) | I2C_MASTER_WRITE, true); i2c_master_write_byte(cmd, BH1750_CONTINUOUS_HIGH_RES_MODE, true); i2c_master_stop(cmd); ret = i2c_master_cmd_begin(I2C_MASTER_NUM, cmd, pdMS_TO_TICKS(100)); i2c_cmd_link_delete(cmd); if (ret != ESP_OK) { ESP_LOGE(TAG_I2C, "BH1750 mode set failed: 0x%x", ret); return false; } ESP_LOGI(TAG_I2C, "BH1750 initialized successfully"); return true; } /** 读取BH1750环境光强度 */ float bh1750_read_light(void) { uint8_t data[2] = { 0 }; i2c_cmd_handle_t cmd = i2c_cmd_link_create(); i2c_master_start(cmd); i2c_master_write_byte(cmd, (BH1750_ADDR << 1) | I2C_MASTER_READ, true); i2c_master_read_byte(cmd, &data[0], I2C_MASTER_ACK); i2c_master_read_byte(cmd, &data[1], I2C_MASTER_NACK); i2c_master_stop(cmd); esp_err_t ret = i2c_master_cmd_begin(I2C_MASTER_NUM, cmd, pdMS_TO_TICKS(100)); i2c_cmd_link_delete(cmd); if (ret != ESP_OK) { ESP_LOGE(TAG_I2C, "BH1750 read failed: 0x%x", ret); return -1; } // 计算光照强度(lx) uint16_t light = (data[0] << 8) | data[1]; return light / 1.2; // 根据数据手册计算 } /** 初始化SHT20温湿度传感器 */ bool sht20_init(void) { ESP_LOGI(TAG_I2C, "Initializing SHT20..."); // 软复位 i2c_cmd_handle_t cmd = i2c_cmd_link_create(); i2c_master_start(cmd); i2c_master_write_byte(cmd, (SHT20_ADDR << 1) | I2C_MASTER_WRITE, true); i2c_master_write_byte(cmd, SHT20_SOFT_RESET, true); i2c_master_stop(cmd); esp_err_t ret = i2c_master_cmd_begin(I2C_MASTER_NUM, cmd, pdMS_TO_TICKS(100)); i2c_cmd_link_delete(cmd); if (ret != ESP_OK) { ESP_LOGE(TAG_I2C, "SHT20 reset failed: 0x%x", ret); return false; } vTaskDelay(pdMS_TO_TICKS(15)); // 等待复位完成 ESP_LOGI(TAG_I2C, "SHT20 initialized successfully"); return true; } /** 读取SHT20测量值 */ static bool sht20_read_measurement(uint8_t command, float* value, bool is_temperature) { // 发送测量命令 i2c_cmd_handle_t cmd = i2c_cmd_link_create(); i2c_master_start(cmd); i2c_master_write_byte(cmd, (SHT20_ADDR << 1) | I2C_MASTER_WRITE, true); i2c_master_write_byte(cmd, command, true); i2c_master_stop(cmd); esp_err_t ret = i2c_master_cmd_begin(I2C_MASTER_NUM, cmd, pdMS_TO_TICKS(100)); i2c_cmd_link_delete(cmd); if (ret != ESP_OK) { ESP_LOGE(TAG_I2C, "SHT20 measurement trigger failed: 0x%x", ret); return false; } // 等待测量完成(温度100ms,湿度40ms) vTaskDelay(pdMS_TO_TICKS(is_temperature ? 100 : 40)); // 读取测量结果(3字节:MSB, LSB, CRC) uint8_t data[3] = { 0 }; cmd = i2c_cmd_link_create(); i2c_master_start(cmd); i2c_master_write_byte(cmd, (SHT20_ADDR << 1) | I2C_MASTER_READ, true); i2c_master_read_byte(cmd, &data[0], I2C_MASTER_ACK); i2c_master_read_byte(cmd, &data[1], I2C_MASTER_ACK); i2c_master_read_byte(cmd, &data[2], I2C_MASTER_NACK); i2c_master_stop(cmd); ret = i2c_master_cmd_begin(I2C_MASTER_NUM, cmd, pdMS_TO_TICKS(100)); i2c_cmd_link_delete(cmd); if (ret != ESP_OK) { ESP_LOGE(TAG_I2C, "SHT20 read failed: 0x%x", ret); return false; } // 提取原始值(清除状态位) uint16_t raw_value = (data[0] << 8) | data[1]; raw_value &= 0xFFFC; // 清除最后两位状态位 // 计算实际值 if (is_temperature) { *value = -46.85 + (175.72 * raw_value) / 65536.0; } else { *value = -6.0 + (125.0 * raw_value) / 65536.0; } return true; } /** 读取SHT20温度 */ float sht20_read_temperature(void) { float temperature = 0.0; if (!sht20_read_measurement(SHT20_TRIGGER_TEMP_MEASUREMENT, &temperature, true)) { ESP_LOGE(TAG_I2C, "Failed to read SHT20 temperature"); return -1; } return temperature; } /** 读取SHT20湿度 */ float sht20_read_humidity(void) { float humidity = 0.0; if (!sht20_read_measurement(SHT20_TRIGGER_HUMIDITY_MEASUREMENT, &humidity, false)) { ESP_LOGE(TAG_I2C, "Failed to read SHT20 humidity"); return -1; } return humidity; } /** 初始化BMP280气压传感器 */ bool bmp280_init(bmp280_calib_t* calib) { ESP_LOGI(TAG_I2C, "Initializing BMP280..."); // 重置设备 i2c_cmd_handle_t cmd = i2c_cmd_link_create(); i2c_master_start(cmd); i2c_master_write_byte(cmd, (BMP280_ADDR << 1) | I2C_MASTER_WRITE, true); i2c_master_write_byte(cmd, BMP280_REG_RESET, true); i2c_master_write_byte(cmd, 0xB6, true); // 复位值 i2c_master_stop(cmd); esp_err_t ret = i2c_master_cmd_begin(I2C_MASTER_NUM, cmd, pdMS_TO_TICKS(100)); i2c_cmd_link_delete(cmd); if (ret != ESP_OK) { ESP_LOGE(TAG_I2C, "BMP280 reset failed: 0x%x", ret); return false; } vTaskDelay(pdMS_TO_TICKS(10)); // 等待复位完成 // 检查设备ID uint8_t id = 0; cmd = i2c_cmd_link_create(); i2c_master_start(cmd); i2c_master_write_byte(cmd, (BMP280_ADDR << 1) | I2C_MASTER_WRITE, true); i2c_master_write_byte(cmd, BMP280_REG_ID, true); i2c_master_start(cmd); i2c_master_write_byte(cmd, (BMP280_ADDR << 1) | I2C_MASTER_READ, true); i2c_master_read_byte(cmd, &id, I2C_MASTER_NACK); i2c_master_stop(cmd); ret = i2c_master_cmd_begin(I2C_MASTER_NUM, cmd, pdMS_TO_TICKS(100)); i2c_cmd_link_delete(cmd); if (ret != ESP_OK || id != 0x58) { // BMP280 ID为0x58 ESP_LOGE(TAG_I2C, "BMP280 ID check failed: 0x%02X", id); return false; } // 读取校准参数 uint8_t calib_data[24] = { 0 }; cmd = i2c_cmd_link_create(); i2c_master_start(cmd); i2c_master_write_byte(cmd, (BMP280_ADDR << 1) | I2C_MASTER_WRITE, true); i2c_master_write_byte(cmd, BMP280_REG_CALIB, true); i2c_master_start(cmd); i2c_master_write_byte(cmd, (BMP280_ADDR << 1) | I2C_MASTER_READ, true); i2c_master_read(cmd, calib_data, sizeof(calib_data), I2C_MASTER_LAST_NACK); i2c_master_stop(cmd); ret = i2c_master_cmd_begin(I2C_MASTER_NUM, cmd, pdMS_TO_TICKS(100)); i2c_cmd_link_delete(cmd); if (ret != ESP_OK) { ESP_LOGE(TAG_I2C, "BMP280 calibration read failed: 0x%x", ret); return false; } // 解析校准参数 calib->dig_T1 = (calib_data[1] << 8) | calib_data[0]; calib->dig_T2 = (calib_data[3] << 8) | calib_data[2]; calib->dig_T3 = (calib_data[5] << 8) | calib_data[4]; calib->dig_P1 = (calib_data[7] << 8) | calib_data[6]; calib->dig_P2 = (calib_data[9] << 8) | calib_data[8]; calib->dig_P3 = (calib_data[11] << 8) | calib_data[10]; calib->dig_P4 = (calib_data[13] << 8) | calib_data[12]; calib->dig_P5 = (calib_data[15] << 8) | calib_data[14]; calib->dig_P6 = (calib_data[17] << 8) | calib_data[16]; calib->dig_P7 = (calib_data[19] << 8) | calib_data[18]; calib->dig_P8 = (calib_data[21] << 8) | calib_data[20]; calib->dig_P9 = (calib_data[23] << 8) | calib_data[22]; // 配置传感器 (温度x2 + 气压x16,正常模式) cmd = i2c_cmd_link_create(); i2c_master_start(cmd); i2c_master_write_byte(cmd, (BMP280_ADDR << 1) | I2C_MASTER_WRITE, true); i2c_master_write_byte(cmd, BMP280_REG_CTRL_MEAS, true); i2c_master_write_byte(cmd, 0b10110111, true); // 温度x2,气压x16,正常模式 i2c_master_stop(cmd); ret = i2c_master_cmd_begin(I2C_MASTER_NUM, cmd, pdMS_TO_TICKS(100)); i2c_cmd_link_delete(cmd); if (ret != ESP_OK) { ESP_LOGE(TAG_I2C, "BMP280 config failed: 0x%x", ret); return false; } ESP_LOGI(TAG_I2C, "BMP280 initialized successfully"); return true; } /** 读取BMP280温度和气压原始值 */ static bool bmp280_read_raw(int32_t* temp_raw, int32_t* press_raw) { uint8_t data[6] = { 0 }; i2c_cmd_handle_t cmd = i2c_cmd_link_create(); i2c_master_start(cmd); i2c_master_write_byte(cmd, (BMP280_ADDR << 1) | I2C_MASTER_WRITE, true); i2c_master_write_byte(cmd, BMP280_REG_PRESS_MSB, true); i2c_master_start(cmd); i2c_master_write_byte(cmd, (BMP280_ADDR << 1) | I2C_MASTER_READ, true); i2c_master_read(cmd, data, sizeof(data), I2C_MASTER_LAST_NACK); i2c_master_stop(cmd); esp_err_t ret = i2c_master_cmd_begin(I2C_MASTER_NUM, cmd, pdMS_TO_TICKS(100)); i2c_cmd_link_delete(cmd); if (ret != ESP_OK) { ESP_LOGE(TAG_I2C, "BMP280 read raw failed: 0x%x", ret); return false; } *press_raw = (data[0] << 12) | (data[1] << 4) | (data[2] >> 4); *temp_raw = (data[3] << 12) | (data[4] << 4) | (data[5] >> 4); return true; } /** 计算实际温度和气压值 */ static void bmp280_compensate(const bmp280_calib_t* calib, int32_t adc_T, int32_t adc_P, float* temperature, float* pressure) { // 补偿温度 int32_t var1, var2, T; var1 = (((double)adc_T) / 16384.0 - ((double)calib->dig_T1) / 1024.0) * ((double)calib->dig_T2); var2 = (((double)adc_T) / 131072.0 - ((double)calib->dig_T1) / 8192.0) * (((double)adc_T) / 131072.0 - ((double)calib->dig_T1) / 8192.0) * ((double)calib->dig_T3); int32_t t_fine = (int32_t)(var1 + var2); T = (var1 + var2) / 5120.0; // 温度补偿值 *temperature = (float)T * 100; // 单位:°C // 补偿气压 int64_t p, var3, var4; var1 = ((double)t_fine / 2.0) - 64000.0; var2 = var1 * var1 * (double)calib->dig_P6 / 32768.0; var2 = var2 + ((var1 * (double)calib->dig_P5) * 2.0); var2 = (var2 / 4.0) + (((double)calib->dig_P4) * 65536.0); var1 = (((double)calib->dig_P3) * var1 * var1 / 524288.0 + ((double)calib->dig_P2) * var1) / 524288.0; var1 = (1.0 + var1 / 32768.0) * ((double)calib->dig_P1); p = 1048576 - (double)adc_P; p = (p - (var2 / 4096.0)) * 6250.0 / var1; var1 = ((double)calib->dig_P9) * p * p / 2147483648.0; var2 = p * ((double)calib->dig_P8) / 32768.0; p = p + (var1 + var2 + ((double)calib->dig_P7)) / 16.0; *pressure = (float)p; // 单位:Pa } /** 读取BMP280温度和气压 */ bool bmp280_read(const bmp280_calib_t* calib, float* temperature, float* pressure) { int32_t temp_raw, press_raw; if (!bmp280_read_raw(&temp_raw, &press_raw)) { return false; } bmp280_compensate(calib, temp_raw, press_raw, temperature, pressure); *temperature /= 100.0; // 转换为°C return true; } /** I2C传感器任务(处理BH1750、SHT20和BMP280) */ void task_i2c_sensors(void* pvParameters) { // 初始化I2C ESP_ERROR_CHECK(i2c_master_init()); // 初始化传感器 bool bh1750_initialized = bh1750_init(); bool sht20_initialized = sht20_init(); bmp280_calib_t bmp280_calib; bool bmp280_initialized = bmp280_init(&bmp280_calib); vTaskDelay(pdMS_TO_TICKS(150)); // 等待传感器初始化完成 while (1) { // 读取传感器数据 float temp = -1, humi = -1, press = -1, lux = -1; float bmp_temp = -1; if (sht20_initialized) { temp = sht20_read_temperature(); humi = sht20_read_humidity(); } if (bmp280_initialized) { if (bmp280_read(&bmp280_calib, &bmp_temp, &press) && temp < 0) { temp = bmp_temp; // 若SHT20温度读取失败,使用BMP280温度 } } if (bh1750_initialized) { lux = bh1750_read_light(); } // 打印传感器数据 ESP_LOGI(TAG_I2C, "Temp: %.2f°C, Humi: %.2f%%, Press: %.2fPa, Lux: %.2flx, bmp280_temp: %.2f°C", temp, humi, press, lux, bmp_temp); // 更新全局传感器数据(加锁保护) if (xSemaphoreTake(g_sensor_mutex, pdMS_TO_TICKS(100)) == pdTRUE) { g_sensor_data.temp = temp; g_sensor_data.humi = humi; g_sensor_data.press = press; g_sensor_data.lux = lux; xSemaphoreGive(g_sensor_mutex); } // 读取间隔 vTaskDelay(pdMS_TO_TICKS(1500)); } } /** 全局亮度控制变量 */ float global_brightness = 0.2f; // 默认亮度为50% /** * 设置全局亮度 * @param brightness 亮度值 (0.0-1.0) */ void set_global_brightness(float brightness) { // 限制亮度范围 if (brightness < 0.0f) brightness = 0.0f; if (brightness > 1.0f) brightness = 1.0f; global_brightness = brightness; ESP_LOGI(TAG, "Brightness set to: %.2f", global_brightness); } /** * HSV转RGB颜色空间并调整亮度 * @param h 色相 (0.0-360.0) * @param s 饱和度 (0.0-1.0) * @param v 明度 (0.0-1.0) * @param brightness 亮度调整因子 (0.0-1.0) * @param r 输出红色值 (0-255) * @param g 输出绿色值 (0-255) * @param b 输出蓝色值 (0-255) */ void hsv_to_rgb(float h, float s, float v, float brightness, uint8_t *r, uint8_t *g, uint8_t *b) { int i; float f, p, q, t; // 应用亮度调整(使用非线性曲线增强暗部细节) v *= brightness * brightness; // 平方曲线使暗部更细腻 if (s == 0) { // 无饱和度(灰色) *r = *g = *b = (uint8_t)(v * 255); return; } h /= 60.0f; // 转换为0-6范围 i = (int)floor(h) % 6; f = h - floor(h); // 小数部分 p = v * (1 - s); q = v * (1 - s * f); t = v * (1 - s * (1 - f)); // 使用更精确的浮点数计算和舍入 switch (i) { case 0: *r = (uint8_t)(v*255.0f + 0.5f); *g = (uint8_t)(t*255.0f + 0.5f); *b = (uint8_t)(p*255.0f + 0.5f); break; case 1: *r = (uint8_t)(q*255.0f + 0.5f); *g = (uint8_t)(v*255.0f + 0.5f); *b = (uint8_t)(p*255.0f + 0.5f); break; case 2: *r = (uint8_t)(p*255.0f + 0.5f); *g = (uint8_t)(v*255.0f + 0.5f); *b = (uint8_t)(t*255.0f + 0.5f); break; case 3: *r = (uint8_t)(p*255.0f + 0.5f); *g = (uint8_t)(q*255.0f + 0.5f); *b = (uint8_t)(v*255.0f + 0.5f); break; case 4: *r = (uint8_t)(t*255.0f + 0.5f); *g = (uint8_t)(p*255.0f + 0.5f); *b = (uint8_t)(v*255.0f + 0.5f); break; default: *r = (uint8_t)(v*255.0f + 0.5f); *g = (uint8_t)(p*255.0f + 0.5f); *b = (uint8_t)(q*255.0f + 0.5f); break; } } /** RGB任务(平滑波浪彩虹效果) */ void task_rgb(void* pvParameters) { gpio_reset_pin(WS2812_GPIO_NUM); ws2812_strip_handle_t ws2812_handle = NULL; ws2812_init(WS2812_GPIO_NUM, WS2812_LED_NUM, &ws2812_handle); // 初始化熄灭所有LED for (int index = 0; index < WS2812_LED_NUM; index++) { ws2812_write(ws2812_handle, index, 0, 0, 0); } // 色相偏移量(控制彩虹波浪移动) - 使用浮点数提高精度 float hue_offset = 0.0f; // 波浪速度控制(数值越小速度越快) const float wave_speed = 0.5f; // 每个LED的色相间隔(减小步长使颜色过渡更平滑) const float hue_step = 8.0f; // 帧率控制(减少延迟提高帧率) const TickType_t frame_delay = pdMS_TO_TICKS(30); ESP_LOGI(TAG, "RGB task initialized with smooth rainbow wave effect"); while (1) { // 等待RGB运行标志 xEventGroupWaitBits(rgb_event_group, RGB_RUN_BIT, pdFALSE, // 不自动清除位 pdTRUE, // 等待位被设置 portMAX_DELAY); ESP_LOGI(TAG, "Smooth rainbow wave effect started"); // 持续运行彩虹效果,直到标志位被清除 while ((xEventGroupGetBits(rgb_event_group) & RGB_RUN_BIT) != 0) { // 为每个LED设置颜色 for (int index = 0; index < WS2812_LED_NUM; index++) { // 使用浮点数计算色相,避免整数截断 float hue = fmodf(hue_offset + index * hue_step, 360.0f); uint8_t r, g, b; // 转换HSV到RGB,使用全局亮度控制 hsv_to_rgb(hue, 1.0f, 0.9f, global_brightness, &r, &g, &b); // 设置LED颜色 ws2812_write(ws2812_handle, index, r, g, b); } // 更新色相偏移(使用浮点数提高精度) hue_offset = fmodf(hue_offset + wave_speed, 360.0f); // 减少延迟,提高帧率,使动画更流畅 vTaskDelay(frame_delay); } // 标志位被清除,熄灭所有LED for (int index = 0; index < WS2812_LED_NUM; index++) { ws2812_write(ws2812_handle, index, 0, 0, 0); } ESP_LOGI(TAG, "Smooth rainbow wave effect stopped"); } } /** 雷达任务 */ void task_radar(void* pvParameters) { gpio_reset_pin(LED_GPIO); gpio_reset_pin(LEIDA_GPIO); gpio_set_direction(LED_GPIO, GPIO_MODE_OUTPUT); gpio_set_level(LED_GPIO, 1); // 初始熄灭 gpio_config_t radar_cfg = { .pin_bit_mask = (1ULL << LEIDA_GPIO), .mode = GPIO_MODE_INPUT, .pull_up_en = GPIO_PULLUP_DISABLE, .pull_down_en = GPIO_PULLDOWN_DISABLE, .intr_type = GPIO_INTR_DISABLE }; gpio_config(&radar_cfg); ESP_LOGI(TAG2, "Radar task started"); static TickType_t rgb_start_tick = 0; const TickType_t rgb_duration = pdMS_TO_TICKS(50000); // 50秒 while (1) { bool detected = gpio_get_level(LEIDA_GPIO); gpio_set_level(LED_GPIO, !detected); // 检测到物体时点亮LED if (detected) { // 设置RGB运行标志 if ((xEventGroupGetBits(rgb_event_group) & RGB_RUN_BIT) == 0) { xEventGroupSetBits(rgb_event_group, RGB_RUN_BIT); ESP_LOGI(TAG2, "RGB activated by radar"); } rgb_start_tick = xTaskGetTickCount(); // 更新启动时间 } // 超时检查:50秒无检测则关闭RGB if ((xEventGroupGetBits(rgb_event_group) & RGB_RUN_BIT) && (xTaskGetTickCount() - rgb_start_tick > rgb_duration)) { xEventGroupClearBits(rgb_event_group, RGB_RUN_BIT); ESP_LOGI(TAG2, "RGB deactivated by timeout"); } vTaskDelay(pdMS_TO_TICKS(10)); } } /** ADC任务(土壤传感器) */ void task_adc(void* pvParameters) { // 配置ADC adc1_config_width(ADC_WIDTH_BIT_12); adc1_config_channel_atten(ADC_CHANNEL, ADC_ATTEN_DB_11); const float vref = 3.3f; // 参考电压 const float adc_max = 4095.0f; // 12位ADC最大值 while (1) { int adc_value = adc1_get_raw(ADC_CHANNEL); float voltage = adc_value * vref / adc_max; float I_value = voltage / 1000.0f; // 电流计算 float V_value = 3.3f - voltage; // 土壤两侧电压 float R_value = (I_value > 0) ? (V_value / I_value) : -1; // 电阻计算 ESP_LOGI(TAG_ADC, "ADC: %d, Voltage: %.2fV, Resist: %.2fΩ", adc_value, voltage, R_value); // 更新全局ADC数据 if (xSemaphoreTake(g_sensor_mutex, pdMS_TO_TICKS(100)) == pdTRUE) { g_sensor_data.adc_voltage = voltage; g_sensor_data.adc_resist = R_value; xSemaphoreGive(g_sensor_mutex); } vTaskDelay(pdMS_TO_TICKS(1500)); } } /** MQTT发送任务 */ static void task_wifi_mqtt(void* pvParameters) { // 初始化NVS esp_err_t ret = nvs_flash_init(); if (ret == ESP_ERR_NVS_NO_FREE_PAGES || ret == ESP_ERR_NVS_NEW_VERSION_FOUND) { ESP_ERROR_CHECK(nvs_flash_erase()); ESP_ERROR_CHECK(nvs_flash_init()); } s_wifi_ev = xEventGroupCreate(); EventBits_t ev = 0; // 初始化WIFI wifi_sta_init(wifi_event_handler); // 等待WIFI连接成功 ev = xEventGroupWaitBits(s_wifi_ev, WIFI_CONNECT_BIT, pdTRUE, pdFALSE, portMAX_DELAY); if (ev & WIFI_CONNECT_BIT) { mqtt_start(); } static char mqtt_json[512]; sensor_data_t temp_data; // 临时存储数据 while (1) { // 每5秒发送一次数据 if (s_is_mqtt_connected) { // 读取全局传感器数据(加锁保护) if (xSemaphoreTake(g_sensor_mutex, pdMS_TO_TICKS(100)) == pdTRUE) { temp_data = g_sensor_data; xSemaphoreGive(g_sensor_mutex); } // 构建JSON格式数据 snprintf(mqtt_json, sizeof(mqtt_json), "{\"opt\":\"dev_sta\",\"val\":{" "\"temp\":%.2f," "\"humi\":%.2f," "\"press\":%.2f," "\"light\":%.2f," "\"adc_voltage\":%.2f," "\"adc_resist\":%.2f" "}}", temp_data.temp, temp_data.humi, temp_data.press, temp_data.lux, temp_data.adc_voltage, temp_data.adc_resist); // 发送MQTT消息 int msg_id = esp_mqtt_client_publish(s_mqtt_client, MQTT_PUBLIC_TOPIC, mqtt_json, strlen(mqtt_json), 1, // QoS=1 0); // 不保留 ESP_LOGI(TAG, "MQTT published: %s (msg_id=%d)", mqtt_json, msg_id); } vTaskDelay(pdMS_TO_TICKS(3000)); // 2.5秒发送一次 } } void app_main(void) { // 初始化互斥锁保护传感器数据 g_sensor_mutex = xSemaphoreCreateMutex(); configASSERT(g_sensor_mutex); // 初始化RGB控制事件组 rgb_event_group = xEventGroupCreate(); // 启动各任务 xTaskCreate(task_adc, "adc_task", 4096, NULL, 8, &AdcTaskHandle); xTaskCreate(task_i2c_sensors, "i2c_sensors_task", 8192, NULL, 10, &IicTaskHandle); xTaskCreate(task_rgb, "rgb_task", 4096, NULL, 9, &RgbTaskHandle); xTaskCreate(task_radar, "radar_task", 4096, NULL, 9, &RadarTaskHandle); // 启动WIFI和MQTT任务 xTaskCreate(task_wifi_mqtt, "wifi_mqtt_task", 8192, NULL, 10, NULL); }在此基础上增加蓝牙配网功能
07-12
/* lcf file for MPC5634M processor */ /* */ /* 1.5 MB Flash, 94KB SRAM */ MEMORY { resetvector: org = 0x00000000, len = 0x00000008 APP_ENTRY: org = 0x00010000, len = 0x00000100 init: org = 0x00010100, len = 0x00000F00 exception_handlers: org = 0x00011000, len = 0x00001000 internal_flash: org = 0x00012000, len = 0x0006C800 /*434K*/ crc32_flash: org = 0x0007E800, len = 0x00001800 /*6K*/ ASW_flash_A: org = 0x00080000, len = 0x00060000 /*384K*/ cal_flash_A: org = 0x000E0000, len = 0x00020000 /*128K*/ ASW_flash_B: org = 0x00100000, len = 0x00060000 /*384K*/ cal_flash_B: org = 0x00160000, len = 0x00020000 /*128K*/ /*~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~*/ cal_ram: org = 0x40000000, len = 0x00008000 /*32K*/ internal_ram: org = 0x40008000, len = 0x0000A800 /*42K*/ crc32_ram: org = 0x40012800, len = 0x00001800 /*6K*/ heap : org = 0x40014000, len = 0x00002000 /*8K*/ stack : org = 0x40016000, len = 0x00001800 /*6K*/ } /* This will ensure the rchw and reset vector are not stripped by the linker */ FORCEACTIVE { "bam_rchw" "bam_resetvector" } SECTIONS { .__bam_bootarea LOAD (0x00000000): {} > resetvector .app_entry (VLECODE) LOAD(0x00010000) : {} > APP_ENTRY GROUP : { .init LOAD (0x10100) : {} .init_vle (VLECODE) LOAD (_e_init) : { *(.init) *(.init_vle) } } > init .__exception_handlers (VLECODE) LOAD (0x00011000) : {} > exception_handlers GROUP : { .text : {} .text_vle (VLECODE) ALIGN(0x08): { *(.text) *(.text_vle) } .rodata (CONST) : { *(.rdata) *(.rodata) } .ctors : {} .dtors : {} extab : {} extabindex : {} } > internal_flash /************将应用层代码和const数据放在ASW_flash************/ GROUP : { .ASW_text (VLECODE) ALIGN(0x08) LOAD (0x00080000): { KEEP(*(.ASW_function)) Sensor.o(.text) EEpromSaveVal.o(.text) CanSend.o(.text) CanReceive.o(.text) BKLrn.o(.text) ClTrqMapLrn.o(.text) TmPosCal.o(.text) EngMotCtrl.o(.text) ClCtrl.o(.text) SlopeEst_Single.o(.text) VehCtl.o(.text) SftMotPidCtrl.o(.text) ClMotPidCtrl.o(.text) TrgtGearSub.o(.text) SftCtrl.o(.text) SftCtrl_TrgtCurrSub.o(.text) TempEst.o(.text) AveCalculate_DBzCpi0h.o(.text) BINARYSEARCH_real32_T.o(.text) InValStdJdgSub_EJoZRQLM.o(.text) InValStdJdgSub_INONT01g.o(.text) look1_iflf_binlcapw.o(.text) look1_iflf_binlxpw.o(.text) look2_iflf_binlcapw.o(.text) look2_iflf_binlcpw.o(.text) look2_iflf_binlxpw.o(.text) LookUp_real32_T_real32_T.o(.text) Myfun_TimeChr2eWq0hbv.o(.text) rt_nonfinite.o(.text) rtGetInf.o(.text) rtGetNaN.o(.text) } .ASW_data (CONST) : { Sensor_data.o(.rodata) const_params.o(.rodata) ClCtrl.o(.rodata) VehCtl_data.o(.rodata) TempEst_data.o(.rodata) } } > ASW_flash_A GROUP : { .__uninitialized_intc_handlertable ALIGN(2048) : {} .data : {} .sdata : {} .sbss : {} .sdata2 : {} .sbss2 : {} .bss : {} } > internal_ram .crc32_section LOAD (0x0007E800): { KEEP(*(.crc32_section)) } > crc32_ram /************param_cal************/ .cal_section LOAD (0x000E0000) : { KEEP(*(.cal_section)) } > cal_ram } /* Freescale CodeWarrior compiler address designations */ _stack_addr = ADDR(stack)+SIZEOF(stack); _stack_end = ADDR(stack); _heap_addr = ADDR(heap); _heap_end = ADDR(heap)+SIZEOF(heap); /* Exceptions Handlers Location (used in Exceptions.c IVPR initialization)*/ EXCEPTION_HANDLERS = ADDR(exception_handlers); /* L2 SRAM Location (used for L2 SRAM initialization) */ L2SRAM_LOCATION = 0x40000000; ~~~~~~~~~~~ mpc5634链接文件flash分区, 应用层程序对应的flash区域为:ASW_flash_A/ASW_flash_B, 标定量对应的flash区域为:cal_flash_A/cal_flash_B, 都做了两个分区,即一个为激活分区,一个为备用分区,想实现对应的flash区域刷写失败后,可以切换到备用分区,我不太清楚具体怎么实现,在链接文件中,我只能指定代码或者标定参数放在ASW_flash_A,cal_flash_A中,没有办法同时放在两个段,A-B的数据刷写只能在刷写A之前写入到B中,那么在程序运行的时候,我怎么指定是运行A中或者B中的代码或者参数呢?标定参数上电是需要复制到ram中的,这个我可以处理,比较麻烦的是代码是直接在flash中运行的,怎么指定使用哪个区域的代码呢?
最新发布
07-20
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值