For a positive integer N , the digit-sum of N is dened as the sum of N itself and its digits. When M is the digitsum of N , we call N a generator of M.
For example, the digit-sum of 245 is 256 (= 245 + 2 + 4 + 5). Therefore, 245 is a generator of 256 .
Not surprisingly, some numbers do not have any generators and some numbers have more than one generator. For example, the generators of 216 are 198 and 207 .
You are to write a program to nd the smallest generator of the given integer.
Input
Your program is to read from standard input. The input consists of T test cases. The number of test cases T is given in the rst line of the input. Each test case takes one line containing an integer N , 1 <= N <= 100000.
Output
Your program is to write to standard output. Print exactly one line for each test case. The line is to contain a generator of N for each test case. If N has multiple generators, print the smallest. If N does not have any generators, print '0'.
Sample Input
3
216
121
2005
Sample Output
198
0
197
直接打表。。。。。
#include<iostream>
#include<string>
#include<cstdio>
#include<cstring>
#include<cmath>
#include<algorithm>
#include<queue>
#include<stack>
#include<map>
#include<iomanip>
using namespace std;
const int maxn = 1e5+7;
int a[maxn];
int getnum(int n){
int sum = n;
while(n){
sum += (n%10);
n /= 10;
}
return sum;
}
void init()
{
memset(a,255,sizeof(a));
for(int i = 0; i < maxn; i++)
{
int x = getnum(i);
if(a[x] == -1) a[x] = i;
}
for(int i = 0; i < maxn; i++)
{
if(a[i] == -1) a[i] = 0;
}
}
int main()
{
int t,n;
scanf("%d",&t);
//cout << a[0] << endl;
init();
while(t--)
{
scanf("%d",&n);
printf("%d\n",a[n]);
}
return 0;
}